Advertisement

Strömungssieden unterkühlter Flüssigkeiten

  • Matthias KindEmail author
  • Thomas Wetzel
Living reference work entry
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas

Literatur

  1. 1.
    Bar-Cohen, A., Simon, T.W.: Wall superheat excursions in the boiling incipience of dielectric fluids. Heat Transfer Eng. 9, 19–31 (1988)CrossRefGoogle Scholar
  2. 2.
    You, S.M., Simon, T.W., Bar-Cohen, A., Tong, W.: Experimental inves- tigation of nucleate boiling incipience with a highly-wetting dielectric fluid (R-113). Int. J. Heat Mass Transf. 33, 105–117 (1990)CrossRefGoogle Scholar
  3. 3.
    Tong, W., Bar-Cohen, A., Simon, T.W., You, S.M.: Contact angle effects on boiling incipience of highly-wetting liquids. Int. J. Heat Mass Transf. 33, 91–103 (1990)CrossRefGoogle Scholar
  4. 4.
    You, S.M., Simon, T.W., Bar-Cohen. A.: Experiments on boiling incipience with highly-wetting dielectric fluid; effects of pressure, subcooling and dis- solved gas content. In: Proceedings. 9th International Heat Transfer Conference, Jerusalem, Aug. 1990, Bd. 2, S. 337–342 (1990)Google Scholar
  5. 5.
    Dix GE.: Vapor void fraction for forced convection with subcooled boiling at low flow rates. Ph.D. Thesis, University of California, Berkeley (1971)Google Scholar
  6. 6.
    Gnielinski, V.: On heat transfer in tubes. Int. J. Heat Mass Transf. 63, 134–140 (2013)CrossRefGoogle Scholar
  7. 7.
    Clausse, A., Lahey, R.T.: The influence of flow development on sub- cooled coiling. Int. Comm. Heat Mass Transfer 17, 545–554 (1990)CrossRefGoogle Scholar
  8. 8.
    Hodgson, A.S.: Forced convection subcooled boiling heat transfer with water in an electrically heated tube at 100 to 550 lb/in. Trans. Instn. Chem. Engrs. 46, 25–31 (1968)Google Scholar
  9. 9.
    Bergles, A.E., Rohsenow, W.M.: The determination of forced-convection surface boiling heat transfer. J. Heat Transf. 86, 365–372 (1964)CrossRefGoogle Scholar
  10. 10.
    Ünal, H.C.: Void fraction and incipient point of boiling during the subcooled nucleate flow boiling of water. Int. J. Heat Mass Transf. 20, 409–419 (1977)CrossRefGoogle Scholar
  11. 11.
    Guglielmini, G., Nannei, E., Pisoni, C.: Survey of heat transfer correlations in forced convection boiling. Wärme- und Stoffübertragung 13, 177–185 (1980)CrossRefGoogle Scholar
  12. 12.
    Bräuer, H., Mayinger, F.: Subcooled boiling heat transfer to R12 in an annular vertical channel. Chem. Eng. Technol. 11, 320–327 (1988)CrossRefGoogle Scholar
  13. 13.
    Bucher, B.: Beitrag zum Siedebeginn beim unterkühlten Sieden mit Zwangskonvektion. Dissertation, University Hannover (1979)Google Scholar
  14. 14.
    Müller-Steinhagen, H., Epstein, N., Watkinson, A.P.: Effect of dissolved gases on subcooled flow boiling heat transfer. Chem. Eng. Process 23, 115–124 (1988)Google Scholar
  15. 15.
    Bartolini, R., Guglielmini, G., Nannei, E.: Experimental study on nucleate boiling of water in vertical upflow and downflow. Int. J. Multiphase Flow 9(2), 161–165 (1983)CrossRefGoogle Scholar
  16. 16.
    Sudo, Y., et al.: Experimental study of incipient nucleate boiling in narrow vertical rectangular channel simulating subchannel of upgraded JRR-3. J. Nucl. Sci. Technol. 23, 73–82 (1986)CrossRefGoogle Scholar
  17. 17.
    Hein, D., Kastner, W., Köhler, W.: Der Einfluß der Strömungsrichtung auf den Wärmeübergang in einem Verdampferrohr. Vortrag der KWU Erlangen auf der GVC-Fachausschußsitzung Freudenstadt (1982)Google Scholar
  18. 18.
    Saha, A., Zuber, N.: Point of net vapor generation and vapor void fraction in subcooled boiling. In: Proceedings of the Fifth International Heat Transf Conf, Tokyo, IV, S. 175–179 (1974)Google Scholar
  19. 19.
    Bartolomei, C.G., Chun, L.T., Huo, N.C.: Heat transfer. Sov. Res. 16(4), 60–63 (1985)Google Scholar
  20. 20.
    Rogers, J.T., Salcudean, M., Abdullah, Z., McLeod, D., Poirier, D.: The onset of significant void in up-flow of water at low pressure and velocities. Int. J. Heat Mass Transf. 30, 2247–2260 (1987)CrossRefGoogle Scholar
  21. 21.
    Moles, F.D., Shaw, J.F.C.: Boiling heat transfer to subcooled liquids under conditions of forced convection. Trans. Instn. Chem. Engrs. 50, 76–84 (1972)Google Scholar
  22. 22.
    Badiuzzaman, M.: The Pakistan Eng. 7, 759 (1967)Google Scholar
  23. 23.
    Kreith, F., Summerfield, M.: Pressure drop and convective heat transfer with surface coiling at high heat flux; data for aniline and n-butyl alcohol. J. Heat Transf. 72, 869–879 (1950)Google Scholar
  24. 24.
    Noel, M.B.: Experimental investigation of the forced-convection and nucleate boiling heat transfer characteristics of liquid ammonia. Calif. Inst. of Technology, Pasadena, Technical Report 32/125 AND Experimental investigation of heat transfer chracteristics of hydrazine. Calif. Inst. of Technology, Pasadena, Technical Report 32/109 (1961)Google Scholar
  25. 25.
    Spindler, K., Shen, N., Hahne, E.: Vergleich von Korrelationen zum Wär- meübergang beim unterkühlten Sieden. Wärme- und Stoffübertragung 25(2), 101–109 (1990)CrossRefGoogle Scholar
  26. 26.
    Chen, J.C.: Correlation for boiling heat transfer to saturated fluids in convective flow. I et EC Process Des. Dev. 5(3), 322–329 (1996)CrossRefGoogle Scholar
  27. 27.
    Bergles, A.E., Collier, J.G., et al.: Two-phase flow and heat transfer in the power and process industries. Hemisphere Publishing, Washington/New York/London (1981)Google Scholar
  28. 28.
    Gungor, K.E., Winterton, R.H.S.: A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transf. 29, 351–358 (1986)CrossRefGoogle Scholar
  29. 29.
    Gungor, K.E., Winterton, R.H.S.: Simplified general correlation for Satu- rated flow boiling and comparisons of correlations with data. Chem. Eng. Res. Des. 65, 148–179 (1987)Google Scholar
  30. 30.
    Forster, H.K., Zuber, H.: Dynamics of vapour bubbles and boiling heat transfer. AIChE J. 9(4), 531ff (1955)CrossRefGoogle Scholar
  31. 31.
    Del Valle, V.H., Kenning, D.B.R.: Subcooled flow boiling at high heat flux. Int. J. Heat Mass Transf. 28, 1907–1920 (1985)CrossRefGoogle Scholar
  32. 32.
    Rouhani, S.Z.: Void measurements in the region of subcooled low quality boiling. Part II, AE-RTL-849 (1966)Google Scholar
  33. 33.
    Rouhani, S.Z.: Experimental and theoretical studies of vapour volume fraction in two-phase flow. Dissertation Norwegen (1979)Google Scholar
  34. 34.
    Jain, P.K., Nourmohammadi, K., Roy, R.P.: A study of forced convective subcooled boiling in heated annular channels. Nucl. Eng. Des. 60, 401–411 (1980)CrossRefGoogle Scholar
  35. 35.
    Zuber, N., Findlay, J.A.: Average volumetric concentration in two-phase flow systems. J. Heat Transf. 87, 453–468 (1965)CrossRefGoogle Scholar
  36. 36.
    Levy, S.: Forced convection subcooled boiling – prediction of vapor volumetric fraction. Int. J. Heat Mass Transf. 10, 951–965 (1967)CrossRefGoogle Scholar
  37. 37.
    Tarasova, N.V., Orlov, V.M.: Teploenergetika. 6, 48–52 (1962)Google Scholar
  38. 38.
    Dormer, J., Bergles, A.E.: Pressure drop with surface boiling in small- diameter tubes. Mass. Inst. Technical Report No. 8767–31 (1964)Google Scholar
  39. 39.
    Mayinger, F., Bärmann, D., Hein, D.: Hydrodynamische Vorgänge und Stabilität der Strömung bei unterkühltem Sieden. Chem. Ing. Techn. 40, 515 ff (1968)CrossRefGoogle Scholar
  40. 40.
    Hoffman, M.A., Wong, C.F.: Prediction of pressure drops in forced convection subcooled boiling water flows. Int. J. Heat Mass Transf. 35, 3291–3299 (1992)CrossRefGoogle Scholar
  41. 41.
    Bartolomei, G.G., Kovrizhnykh, V.P.: Correlation of experimental data on hydraulic resistance with subcooled boiling. Therm. Eng. 38(12), 669–672 (1991)Google Scholar
  42. 42.
    Hahne, E., Spindler, K., Skok, H.: A new pressure drop correlation for subcooled flow boiling of refrigerants. Int. J. Heat Mass Transf. 36(17), 4267–4274 (1993)CrossRefGoogle Scholar
  43. 43.
    Bibeau, E.L., Salcudean, M.: The effect of flow direction on void growth at low velocities and low pressures. Int. Comm. Heat Mass Transf. 17, 19–25 (1990)Google Scholar
  44. 44.
    Bibeau, E.L., Salcudean, M.: (1993): Subcooled void growth for finned and circular annular geometries at low pressures and low velocities. Exp. Heat Transf. 3, 1183–1190Google Scholar
  45. 45.
    Staub, F.W.: The void fraction in subcooled boiling – prediction of the initial point of net vapor generation. J. Heat Transf. 90, 151–156 (1968)CrossRefGoogle Scholar
  46. 46.
    Costa, J.: Mesure de la perle de pression par acceleration et étude de l’ apparition du taux de vide en ébullition locale à basse pression. Note TT No. 244, Ceng, Grenoble, France (1967)Google Scholar
  47. 47.
    Dougall, R.S., Lippert, T.E.: Net vapour generation point in boiling flow of Trichlorotrifluoroethane at high pressures. NASA Contractor Report No. 2241 (1971)Google Scholar
  48. 48.
    Edelmann, Z., Elias, E.: Void fraction distribution in low flow rate subcooled boiling. Nucl. Eng. Des. 66, 375–382 (1981)CrossRefGoogle Scholar
  49. 49.
    Evangelisti, R., Lupoli, P.: The void fraction in an annular channel at atmospheric pressure. Int. J. Heat Mass Transf. 12, 699–711 (1969)CrossRefGoogle Scholar
  50. 50.
    Griffith, P., Clark, J.A., Rohsenow, W.M.: Void volumes in subcooled boiling systems. ASME Paper, No. 58-HT-19 (1958)Google Scholar
  51. 51.
    Hino, R., Ueda, T.: Studies on heat transfer and flow characteristics in subcooled flow boiling, Part 1: Boiling characteristics. Int. J. Multiphase Flow 11, 269–281 (1985)CrossRefGoogle Scholar
  52. 52.
    Egen, R.A., Dingee, D.A., Chastain, J.W.: Vapor Formation and Behavior in Boiling Heat Transfer, BMI-Report No. 1163, Battelle Memorial Institute, Columbus, Ohio (USA) (1957)Google Scholar
  53. 53.
    Ferrel, J.K.; A study of Convection Boiling Inside Channels, cited in [36] (1964)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Thermische VerfahrenstechnikKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland

Section editors and affiliations

  • Peter Stephan
    • 1
  1. 1.Institut für Technische ThermodynamikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations