Advertisement

Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher

  • Ludger Josef Fischer
Living reference work entry

Latest version View entry history

Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Literatur

  1. 1.
    Alexiades, V., Solomon, A.D.: Mathematical Modeling of Melting and Freezing Processes. Taylor & Francis, Washington (1993)Google Scholar
  2. 2.
    Hauer, A., Hiebler, S., Reuß, M.: Wärmespeicher, 5., Vollst. BINE Informationsdienst. Fraunhofer IRB Verlag, Stuttgart (2010)Google Scholar
  3. 3.
    Beckmann, W. (Hrsg.): Crystallization. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2013)Google Scholar
  4. 4.
    Dincer, I., Rosen, M.A.: Thermal Energy Storage: Systems and Applications, 2. Aufl. Laserwords Private Limited, Chennai (2002)Google Scholar
  5. 5.
    Pielichowska, K., Pielichowski, K.: Phase change materials for thermal energy storage. Prog. Mater. Sci. 65, 67–123 (2014)Google Scholar
  6. 6.
    Abhat, A.: Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energy 30(4), 313–332 (1983)Google Scholar
  7. 7.
    Mehling, H., Cabeza, L.F.: Heat and Cold Storage with PCM. Springer, Berlin (2008)Google Scholar
  8. 8.
    VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen: VDI-Wärmeatlas, 11. Aufl. Springer, Berlin/Heidelberg/New York (2013)Google Scholar
  9. 9.
    Hirman, S., Suwono, A., Mansoori, G.A.: Characterization of alkanes and paraffin waxes for application as phase change energy storage medium. Energy Sources 16(1), 117–128 (1994)Google Scholar
  10. 10.
    Yaws, C.L.: Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals. McGraw-Hill Education LLC, New York (1999)Google Scholar
  11. 11.
    Tanaka, Y., Itani, Y., Kubota, H., Makita, T.: Thermal conductivity of five normal alkanes in the temperature range 283–373K at pressures up to 250MPa. Int. J. Thermophys. 9(3), 331–350 (1988)Google Scholar
  12. 12.
    Griesbaum, K., Behr, A., Biedenkapp, H., Voges, D., Garbe, H.-W., Paetz, D., Collin, C., Mayer, G., Höke, D.: Hydrocarbons. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, New York (2000)Google Scholar
  13. 13.
    Bo, H., Gustafsson, E.M., Setterwall, F.: Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy 24(12), 1015–1028 (1999)Google Scholar
  14. 14.
    Vélez, C., Ortiz De Zarate, J.M., Khayet, M.: Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region. Int. J. Therm. Sci. 94, 139–146 (2015)Google Scholar
  15. 15.
    Knothe, G., Steidley, K.R.: Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84(9), 1059–1065 (2005)Google Scholar
  16. 16.
    Vélez, C., Khayet, M., Ortiz De Zarate, J.M.: Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: N-Hexadecane, n-octadecane and n-eicosane. Appl. Energy 143, 383–394 (2015)Google Scholar
  17. 17.
    Caudwell, D.R., Trusler, J.P.M., Vesovic, V., Wakeham, W.A.: The viscosity and density of n-dodecane and n-octadecane at pressures up to 200 MPa and temperatures up to 473 K. Int. J. Thermophys. 25(5), 1339–1352 (2004)Google Scholar
  18. 18.
    Chu, L.T., Sindilariu, C., Freilich, A., Fried, V.: Some physical properties of long chain hydrocarbons. Can. J. Chem. 64, 1–3 (1986)Google Scholar
  19. 19.
    Queimada, A.J., Quinones-Cisneros, S.E., Marrucho, I.M., Coutinho, J.A.P., Stenby, E.H.: Hydrocarbon mixtures 1. Int. J. Thermophys. 24(5), 1221–1239 (2003)Google Scholar
  20. 20.
    Paris, J., Falardeau, M., Villeneuve, C.: Thermal storage by Latent heat: A viable option for energy conservation in buildings. Energy Sources 15(1), 85–93 (1993)Google Scholar
  21. 21.
    Vargaftik, N.B., Filippov, L.P., Taryimanov, A.A., Totskii, E.E.: Handbook of Thermal Conductivity of Liquid and Gases. Energoatomizdat Publishing House, Moscow (1994)Google Scholar
  22. 22.
    Jin, Y., Wunderlich, B.: Heat capacities of paraffins and polyethylene. J. Phys. Chem. 95(22), 9000–9007 (1991)Google Scholar
  23. 23.
    Anneken, D.J., Both, S., Chistoph, R., Fieg, G., Steinberger, U., Westfechtel, A.: Fatty acids. In: Ullmann’s Encyclopedia of Industrial Chemistry, 547–572. .(2012)Google Scholar
  24. 24.
    Putnam, W.E., McEachern, D.M., Kilpatrick, J.E.: Entropy and related thermodynamic properties of acetonitrile (methyl cyanide). J. Chem. Phys. 42(2), 749–755 (1965)Google Scholar
  25. 25.
    D. Velzen van, R. L. Cardozo, and H. Langenkamp, „A liquid viscosity-temperature-chemical constitution relation for organic compounds.“ Ind. Eng. Chem. Fundam. 11(1), 20–25 (1972)Google Scholar
  26. 26.
    Mackay, D., Shiu, W.Y., Ma, K., Lee, S.C.: Properties and Environmental Fate Second Edition Introduction and Hydrocarbons vol. III, no. 14(2006)Google Scholar
  27. 27.
    Wolfram, J.: Messungen der Wärmeleitfähigkeit von organischen, aliphatischen Flüssigkeiten und von Gasen nach einem instationären Absolutverfahren (1964)Google Scholar
  28. 28.
    Perry, R.H., Green, D.W., Maloney, J.O.: Perry’s Chemical Engineers’ Handbook, 7 Aufl., Bd. 27 (1997)Google Scholar
  29. 29.
    Ahluwalia, R., Wanchoo, R.K., Sharma, S.K., Vashisht, J.L.: Density, viscosity, and surface tension of binary liquid systems: Ethanoic acid, propanoic acid, and butanoic acid with nitrobenzene. J. Solut. Chem. 25(9), 905–917 (1996)Google Scholar
  30. 30.
    Lane, G.A.: Low temperature heat storage with phase change materials. Int. J. Ambient Energy 1(3), 155–168 (1980)Google Scholar
  31. 31.
    Lutton, E.S.: Fatty Acids: Their Chemistry, Properties, Production and Uses. Interscience, New York (1967)Google Scholar
  32. 32.
    Desgrosseilliers, L., Whitman, C.A., Groulx, D., White, M.A.: Dodecanoic acid as a promising phase-change material for thermal energy storage. Appl. Therm. Eng. 53(1), 37–41 (2013)Google Scholar
  33. 33.
    Karaipekli, A., Sari, A., Kaygusuz, K.: Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew. Energy 32(13), 2201–2210 (2007)Google Scholar
  34. 34.
    Nunes, V.M.B., Queirós, C.S., Lourenço, M.J.V., Santos, F.J.V., Nieto de Castro, C.A.: Molten salts as engineering fluids – a review: Part I. Molten alkali nitrates. Appl. Energy 183, 603–611 (2016)Google Scholar
  35. 35.
    Stamatiou, A., Obermeyer, M., Fischer, L.J., Schuetz, P., Worlitschek, J.: Investigation of unbranched, saturated, carboxylic esters as phase change materials. Renew. Energy 108, 401–409 (2017)Google Scholar
  36. 36.
    Pratas, M.J., Freitas, S., Oliveira, M.B., Monteiro, S.C., Lima, A.S., Coutinho, J.A.P.: Densities and viscosities of fatty acid methyl and ethyl esters. J. Chem. Eng. Data 55(9), 3983–3990 (2010)Google Scholar
  37. 37.
    Babich, M.W., Hwang, S.W., Mounts, R.D.: The thermal analysis of energy storage materials by differential scanning calorimetry. Thermochim. Acta. 210, 77–82 (1992)Google Scholar
  38. 38.
    Suppes, G.J., Goff, M.J., Lopes, S.: Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 58(9), 1751–1763 (2003)Google Scholar
  39. 39.
    Wirth, E., Droege, J.W., Wood, H.: Low Temperature Heat Capacity of Palmitic Acid and Methyl Palmitate, 60(6), 917–918 (1956)Google Scholar
  40. 40.
    Aydin, A.A., Okutan, H.: High-chain fatty acid esters of myristyl alcohol with odd carbon number: Novel organic phase change materials for thermal energy storage – 2. Sol. Energy Mater. Sol. Cells 95(8), 2417–2423 (2011)Google Scholar
  41. 41.
    Aydin, A.A.: High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters’ homologous series. Sol. Energy Mater. Sol. Cells 113, 44–51 (2013)Google Scholar
  42. 42.
    Peter, K., Vollhardt, C., Schore, N.E.: Organische Chemie. VCH Verlagsgesellschaft, Weinheim (1990)Google Scholar
  43. 43.
    Noweck, K., Grafahrend, W.: Fatty alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry, 547–572 (2012)Google Scholar
  44. 44.
    Van Miltenburg, J.C., Gabrielová, H., Růžička, K.: Heat capacities and derived thermodynamic functions of 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol between 5 K and 390 K. J. Chem. Eng. Data 48(5), 1323–1331 (2003)Google Scholar
  45. 45.
    Yaws, C.L.: Handbook of Thermal Conductivity, Volume 3: Organic Compounds C8 to C28. Gulf Publishing, Houston (1995)Google Scholar
  46. 46.
    Al-Jimaz, A.S., Al-Kandary, J.A., Abdul-Latif, A.H.M.: Densities and viscosities for binary mixtures of phenetole with 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures. Fluid Phase Equilib. 218(2), 247–260 (2004)Google Scholar
  47. 47.
    Nichols, G. et al.: Evaluation of the Vaporization , Fusion , and Sublimation Enthalpies of the 298.15 K by Correlation Gas Chromatography, J. Chem. Eng. Data, 475–482 (2006)Google Scholar
  48. 48.
    Khasanshin, T.S., Zykova, T.B.: Specific heat of saturated monatomic alcohols. J. Eng. Phys. 56(6), 698–700 (1989)Google Scholar
  49. 49.
    Shan, Z., Asfour, A.-F.A.: Viscosities and densities of nine binary 1-alkanol systems at 293,15 K and 298,15 K. J. Chem. Eng. Data 44(1), 118–123 (1999)Google Scholar
  50. 50.
    Acree William, J., Chickos, J.S.: Phase transition enthalpy measurementsof organic and organometallic compounds. Sublimation, vaporizationand fusion enthalpies from 1880 to 2010. J. Phys. Chem. Ref. Data 39(4), 43101 (2010)Google Scholar
  51. 51.
    Matsuo, S., Makita, T.: Viscosities of six 1-Alkanols at temperatures in the range 298–348 K and pressures up to 200 MPa. Int. J. Thermophys. 10(4), 833–843 (1989)Google Scholar
  52. 52.
    Mosselman, C., Mourik, J., Dekker, H.: Enthalpies of phase change and heat capacities of some long-chain alcohols. Adiabatic semi-microcalorimeter for studies of polymorphism. J. Chem. Thermodyn. 6(5), 477–487 (1974)Google Scholar
  53. 53.
    Mosselman, C., Dekker, H.: Enthalpies of formation of nitroalkanes, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 417–424 (1973)Google Scholar
  54. 54.
    Ventola, L., et al.: Melting behaviour in the n-alkanol family. Enthalpy-entropy compensation. Phys. Chem. Chem. Phys. 6(8), 1786–1791 (2004)Google Scholar
  55. 55.
    Xing, J., Tan, Z.C., Shi, Q., Tong, B., Wang, S.X., Li, Y.S.: Heat capacity and thermodynamic properties of 1-hexadecanol. J. Therm. Anal. Calorim. 92(2), 375–380 (2008)Google Scholar
  56. 56.
    Van Miltenburg, J.C., Oonk, H.A.J., Ventola, L.: Heat capacities and derived thermodynamic functions of 1-octadecanol, 1-nonadecanol, 1-eicosanol, and 1-docosanol between 10 K and 370 K. J. Chem. Eng. Data 46(1), 90–97 (2001)Google Scholar
  57. 57.
    Schiweck, H. et al.: Sugar alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry, S. 2–32 (2012)Google Scholar
  58. 58.
    Kaizawa, A., et al.: Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat Mass Transf. 44(7), 763–769 (2008)Google Scholar
  59. 59.
    Barone, G., Della Gatta, G., Ferro, D., Piacente, V.: Enthalpies and entropies of sublimation, vaporization and fusion of nine polyhydric alcohols. J. Chem. Soc. Faraday Trans. 86(1), 75 (1990)Google Scholar
  60. 60.
    Höhlein, S., König-Haagen, A., Brüggemann, D.: Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES). Materials (Basel) 10(4), 444 (2017)Google Scholar
  61. 61.
    Parks, G.S., Huffman, M.: Thermal data on organic compounds. IV. The heat capacities, entropies and free energies of normal propyl alcohol, ethyl ether and dulctitol, Therm. Data Org. Compd. 48(1925), 2788–2793 (1926)Google Scholar
  62. 62.
    Zhu, C., Ma, Y., Zhou, C.: Densities and viscosities of sugar alcohol aqueous solutions. J. Chem. Eng. Data. 55(9), 3882–3885 (2010)Google Scholar
  63. 63.
    Lebrun, N., Van Miltenburg, J.C.: Calorimetric study of maltitol: Correlation between fragility and thermodynamic properties. J. Alloys Compd. 320(2), 320–325 (2001)Google Scholar
  64. 64.
    Kumaresan, G., Velraj, R., Iniyan, S.: Thermal analysis of D-mannitol for use as phase change material for latent heat storage. J. Appl. Sci. 11(16), 3044–3048 (2011)Google Scholar
  65. 65.
    Gawron, K., Schröder, J.: Properties of some salt hydrates for latent heat storage. Int. J. Energy Res. 1(4), 351–363 (1977)Google Scholar
  66. 66.
    Eva, G., Mehling, H., Werner, M.: Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J. Phys. D Apppl. Phys. 40, 4636–4641 (2007)Google Scholar
  67. 67.
    Shamberger, P.J., Reid, T.: Thermophysical properties of potassium fluoride tetrahydrate from (243 to 348) K. J. Chem. Eng. Data 58(2), 294–300 (2013)Google Scholar
  68. 68.
    Nagano, K., Mochida, T., Takeda, S., Domański, R., Rebow, M.: Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng. 23(2), 229–241 (2003)Google Scholar
  69. 69.
    Shamberger, P.J., Reid, T.: Thermophysical properties of lithium nitrate trihydrate from (253 to 353) K. J. Chem. Eng. Data 57(5), 1404–1411 (2012)Google Scholar
  70. 70.
    Hale, B.D.V. et al.: Phase Change Materials Handbook. Nasa Contractor Report Nasa Cr-51363 (1971)Google Scholar
  71. 71.
    Patnaik, P.: Handbook of Inorganic Chemicals. McGraw-Hill, New York (2003)Google Scholar
  72. 72.
    Ruben, H.W., Olovsson, I., Templeton, D.H., Rosenstein, R.D.: Crystal structure and entropy of sodium sulfate decahydrate. J. Am. Chem. Soc. 83(4), 820–824 (1961)Google Scholar
  73. 73.
    Kobe, K.A., Anderson, C.H.: The heat capacity of saturated sodium sulfate solution. J. Phys. Chem. 40(4), 429–433 (1935)Google Scholar
  74. 74.
    Sharma, S.K., Jotshi, C.K., Singh, A.: Viscosity of molten sodium salt hydrates. J. Chem. Eng. Data 29(2), 245–246 (1984)Google Scholar
  75. 75.
    Vanderzee, E.: J. Chem. Thermodyn. 14(3), 219–238 (1982)Google Scholar
  76. 76.
    Grönvold, F., Meisingset, K.K.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. J. Chem. Thermodyn. 14(11), 1083–1098 (1982)Google Scholar
  77. 77.
    Glasser, L.: Thermodynamics of inorganic hydration and of humidity control, with an extensive database of salt hydrate pairs. J. Chem. Eng. Data 59(2), 526–530 (2014)Google Scholar
  78. 78.
    Naumann, R., Emons, H.H.: Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J. Therm. Anal. 35(3), 1009–1031 (1989)Google Scholar
  79. 79.
    Lorsch, H.G., Kauffman, K.W., Denton, J.C.: Thermal energy storage for solar heating and off-peak air conditioning. Energy Convers 15(1–2), 1–8 (1975)Google Scholar
  80. 80.
    Yinping, Z., Yi, J., Yi, J.: A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 10(3), 201–205 (1999)Google Scholar
  81. 81.
    Meisingset, K.K., Gronvold, F.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K III. CH3CO2Na 3H2O, CH3CO2Li 2H2O, and (CH3CO2)2Mg 4H2O. J. Chem. Thermodyn. 16(6), 523–536 (1984)Google Scholar
  82. 82.
    Larranaga, M.D., Lewis, R.J., Lewis, R.A.: Hawley’s Condensed Chemical Dictionary, 16. Aufl. Wiley, Hoboken (2016)Google Scholar
  83. 83.
    Pielichowski, K., Flejtuch, K.: Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 13, 690–696 (2002)Google Scholar
  84. 84.
    Tyagi, O.S., Bisht, H.S., Chatterjee, A.K.: Phase transition, conformational disorder, and chain packing in crystalline long-chain symmetrical alkyl ethers and symmetrical alkenes. J. Phys. Chem. B. 108(9), 3010–3016 (2004)Google Scholar
  85. 85.
    Oyama, H., et al.: Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilib. 234(1–2), 131–135 (2005)Google Scholar
  86. 86.
    Belandria, V., Mohammadi, A.H., Dominique, R.: Volumetric properties of the (tetrahydrofuran + water) and (tetra-n-butyl ammonium bromide + water) systems: Experimental measurements and correlations (TBAB). J. Chem. Thermodyn. 41, 1382–1386 (2009)Google Scholar
  87. 87.
    Nagatomi, T.: Thermal conductivity measurement of TBAB hydrate by the transient hot-wire using parylene-coated probe. (2013)Google Scholar
  88. 88.
    BASF The Chemical Company: Technisches Merkblatt AdBlue. (2006)Google Scholar
  89. 89.
    Wei, G. et al.: Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 0–1 (2017)Google Scholar
  90. 90.
    Raud, R., Cholette, M.E., Riahi, S., Bruno, F., Saman, W.: Design optimization method for tube and fin latent heat thermal energy storage systems. Energy 134, 585–594 (2017)Google Scholar
  91. 91.
    Dinker, A., Agarwal, M., Agarwal, G.D.: Heat storage materials, geometry and applications: A review. J. Energy Inst. 90(1), 1–11 (2017)Google Scholar
  92. 92.
    Lizana, J., Chacartegui, R., Barrios-Padura, A., Valverde, J.M.: Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energy 203, 219–239 (2017)Google Scholar
  93. 93.
    Fleischer, A.S.: Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications. Springer, Villanova (2015)Google Scholar
  94. 94.
    Kaizawa, A., et al.: Thermal and flow behaviors in heat transportation container using phase change material. Energy Convers. Manag. 49(4), 698–706 (2008)Google Scholar
  95. 95.
    Fischer, L.J., von Arx, S., Wechsler, U., Züst, S., Worlitschek, J.: Phase change dispersion properties, modeling apparent heat capacity. Int. J. Refrig. 74, 240–253 (2017)Google Scholar
  96. 96.
    Weiss, L., Züst, S., Fischer, L., Worlitschek, J., Reinhard, E.: Vorrichtung zur Kühlung von Maschinenbauteilen mittels PCM, EP2949422 (2014)Google Scholar
  97. 97.
    Mehling, H., Cabeza, L.F.: Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications. (2008)Google Scholar
  98. 98.
    Kauffeld, M., Wang, M.J., Goldstein, V., Kasza, K.E.: Ice slurry applications. Int. J. Refrig. 33(8), 1491–1505 (2010)Google Scholar
  99. 99.
    Egolf, P.W., Kauffeld, M.: From physical properties of ice slurries to industrial ice slurry applications. Int. J. Refrig. 28(1), 4–12 (2005)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Hochschule LuzernTechnik & ArchitekturHorwSchweiz

Section editors and affiliations

  • Matthias Kind
    • 1
  1. 1.Institut für Thermische VerfahrenstechnikKarlsruher Institut für Technologie (KIT)KarslruheDeutschland

Personalised recommendations