Advertisement

Schwingungen in Wärmeübertrager-Rohrbündeln

  • Samir Ziada
  • Marwan Hassan
  • Horst Gelbe
Living reference work entry
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Es werden die strömungsinduzierten Schwingungen von Rohren in Rohrbündeln behandelt, die durch Gase, Flüssigkeiten oder Gas-Flüssigkeitsgemische quer angeströmt werden. Der Einfluss der Längsan- oder -durchströmung ist normalerweise gering und nur bei Rohren mit großen Stützlängen und geringer Festigkeit (z. B. dünnwandigen Kunststoffrohren) zu berücksichtigen (Berechnungsgrundlagen für diesen Fall s. [1]). Die Auslegungsrichtlinien unter Abschn. 5 decken die Anforderungen an Standard-Wärmeübertrager in der chemischen und in der Prozessindustrie ab, nicht jedoch die zusätzlichen Anforderungen (Begrenzung des Abriebs), die z. B. in Kraftwerksblöcken mit langen Standzeiten bestehen

Literatur

  1. 1.
    Blevins, R.D.: Flow-Induced Vibration, 2. Aufl. Van Nostrand Reinhold, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Chen, S.S.: Flow-Induced Vibration of Circular Cylindrical Structures. Hemisphere Publishing, Washington, DC (1987)Google Scholar
  3. 3.
    Gelbe, H., Jahr, M., Schröder, K.: Flow-induced vibrations in heat exchanger tube bundels. Chem. Eng. Process 34, 289–298 (1995)CrossRefGoogle Scholar
  4. 4.
    Gasch, R., Knothe, K.: Strukturdynamik. Bd. 2: Kontinua und ihre Diskretisierung. Springer Verlag, Berlin (1989)CrossRefGoogle Scholar
  5. 5.
    Gelbe, H., Mohr, U., Schröder, K.: Schwingungen in Wärmeübertrager-Rohrbündeln. Computerprogramm „Good Vibration“ nach VDI-Wärmeatlas, 9, Kap. Oc. Aufl. TU, Berlin (2002)Google Scholar
  6. 6.
    Jahr, M.: Einflüsse von Strukturparametern und Strömungsverteilung auf das Schwingverhalten mit Luft angeströmter Rohrbündel. Dissertation,. TU Berlin (1995)Google Scholar
  7. 7.
    Yeh, Y.S., Chen, S.S.: Vibration of component cooling water heat exchangers. In: ASME PVP Conference, Bd. 189, S. 153–164, Nashville (1990)Google Scholar
  8. 8.
    Gorman, D.J.: Exact analytical solutions for free vibration of steam generator U-tubes. J. Press. Vessel. Technol. 110, 422–429 (1988)CrossRefGoogle Scholar
  9. 9.
    Tubular exchanger manufacturers association, i.: Standards of tubular exchanger manufacturers association ... New York, N.Y, Tubular exchanger manufacturers association, inc. (1941)Google Scholar
  10. 10.
    Ebene Böden und Platten nebst Verankerungen. Beuth Verlag, Berlin (1991)Google Scholar
  11. 11.
    Berücksichtigung von Wärmespannungen bei Wärmeaustauschern mit festen Rohrplatten. Beuth Verlag, Berlin (1991)Google Scholar
  12. 12.
    Blevins, R.D.: Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, New York (1979)Google Scholar
  13. 13.
    Parker, R.: Acoustic resonances in passages containing banks of heat exchanger tubes. J. Sound Vib. 57, 245–260 (1978)CrossRefGoogle Scholar
  14. 14.
    Ziada, S., Oengören, A., Bühlmann, E.T.: On acoustical resonance in tube arrays. J. Fluids Struct. 3, 293–314 (1989a)CrossRefGoogle Scholar
  15. 15.
    Gelbe, H., Schröder, K.: Bestimmung der fluidelastischen Instabilität in querangeströmten Rohrbündeln. Chem. Ing. Techn. 70, 80–88 (1998)CrossRefGoogle Scholar
  16. 16.
    Schröder, K., Gelbe, H.: New design recommendations for fluid-elastic instability in heat exchanger tube bundles. J. Fluids Struct. 13, 361–379 (1999)CrossRefGoogle Scholar
  17. 17.
    Pettigrew, M.J., Goyder, H.G.D., et al.: Damping of multispan heat exchanger tubes. In: ASME PVP Conference, Bd. 104, S. 81–87, Chicago (1986a)Google Scholar
  18. 18.
    Pettigrew, M.J., Rogers, R.J., Axisa, F.: Damping of multispan heat exchanger tubes. In: ASME PVP Conference, Bd. 104, S. 89–98, Chicago (1986b)Google Scholar
  19. 19.
    McAdams, W.H., Woods, W.K., Herman, L.C.: Vaporization inside horizontal tubes-II-benzene-oil mixtures. Trans. ASME. 64, 193–200 (1942)Google Scholar
  20. 20.
    Pettigrew, M.J., Taylor, C.E., Kim, B.S.: Vibration of tube bundles in two-phase cross flow – part 1: hydrodynamic mass and damping. ASME J. Press. Vessel. Technol. 111, 466–477 (1989a)CrossRefGoogle Scholar
  21. 21.
    Andjelić, M.: Stabilitätsverhalten querangeströmter Rohrbündel mit versetzter Dreiecksteilung. Dissertation, University of Hannover (1988)Google Scholar
  22. 22.
    Andjelić, M., Popp, K.: Stability effects in a normal triangular cylinder array. J. Fluids Struct. 3, 165–185 (1989)CrossRefGoogle Scholar
  23. 23.
    Connors, H.J.: An experimental investigation of the flow-induced vibration of tube arrays in cross-flow. Ph.D. Thesis, University of Pittsburgh (1970)Google Scholar
  24. 24.
    Troidl, H.: Strömungsinduzierte Schwingungen querangeströmter Rohrbündel bei versetzter und fluchtender Rohranordnung. Dissertation,. TU. München (1986)Google Scholar
  25. 25.
    Chen, S.S., Jendrzejczek, J.A.: Stability of tube arrays in cross-flow. Nucl. Eng. Des. 75, 351–373 (1982)CrossRefGoogle Scholar
  26. 26.
    Weaver, D.S., Fitzpatrick, J.A.: A review of flow-induced vibration in heat exchangers. In: Proc. Int. Conf. on Flow-Induced Vibrations. Bowness-on-Windermere (Großbritannien), Bd. A1, S. 1–17 (1987)Google Scholar
  27. 27.
    Pettigrew, M.J., Taylor, C.E.: Fluid-elastic instability of heat exchanger tube bundles. Review and design recommendations. In: Proceedings of International Conference Institution of Mechanical Engineering on Flow-Induced Vibration, Bd. C 416/015, S. 349–368, Brighton (1991)Google Scholar
  28. 28.
    Mohr, U., Schröder, K., Gelbe, H.: The effect of approach flow direction on the fluid-elastic instability of tubes in triangular tube arrays. In: Ziada, S., Staubli, T. (Hrsg.) Proceedings of 7th International Conference on Flow-Induced Vibration FIV 2000, Luzern (Schweiz), S. 481–488. Balkema, Rotterdam (Niederlande) (2000)Google Scholar
  29. 29.
    Chen, S.S., Jendrzejczyk, J.A.: Experiments on fluid instability in tube banks subjected to liquid cross-flow. J. Sound Vib. 78, 355–381 (1981)CrossRefGoogle Scholar
  30. 30.
    Yeung, H.C., Weaver, D.C.: The effect of approach flow direction on the flow-induced vibrations of a triangular tube array. ASME J. Mech. Des. 105, 76–82 (1983)Google Scholar
  31. 31.
    Connors, H.J.: Fluidelastic vibration of heat exchanger tube arrays. ASME J. Mech. Des. 100, 347–353 (1978)CrossRefGoogle Scholar
  32. 32.
    Goyder, H.G.D.: A practical method for assessing tube vibration in heat exchangers. In: ASME International Symposium on Flow-Induced Vibration and Noise, Anaheim (1992). (HTD-Bd. 230/NE-Bd. 9) 1:237–260Google Scholar
  33. 33.
    Pettigrew, M.J., Taylor, C.E., Kim, B.S.: The effect of tube bundle geometry on vibration in two-phase cross-flow. In: Ziada, S., Staubli, T. (Hrsg.) Proceedings of 7th International Conference on Flow-Induced Vibration FIV 2000, Luzern (Schweiz) 2000, S. 561–568. Balkema, Rotterdam (2000)Google Scholar
  34. 34.
    Ulbrich, R., Mewes, D.: Vertical, upward gas-liquid two-phase flow across a tube bundle. Int. J. Multiphase Flow. 20, 249–272 (1994)CrossRefGoogle Scholar
  35. 35.
    Feenstra, P., Judd, R.L., Weaver, D.S.: Fluid-elastic instability in a tube array subjected to two-phase R-11 cross-flow. In: ASME PVP Conference on Flow-Induced Vibration, Bd. 298, S. 13–27, Hawaii (1995)Google Scholar
  36. 36.
    Mann, W., Mayinger, F.: Flow-induced vibration of tube bundles subjected to single- and two-phase cross-flow. In: Proceedings of 2nd International Conference on Multiphase Flow, Bd. 4, S. 9–15, Kyoto (1995). (s. auch Mann, W.: Schwingungsanregungen in Rohrbündeln durch Dichteschwankungen in Dampf-Flüssigkeits-Strömungen. Fortschr.-Ber. VDI, Reihe 6, Nr. 359. Düsseldorf: VDI Verlag. 1997)CrossRefGoogle Scholar
  37. 37.
    Feenstra, P., Weaver, D.S., Judd, R.L.: Modelling two-phase flow-excited fluid-elastic instability in tube arrays. In: Ziada, S., Staubli, T. (Hrsg.) Proceedings of 7th International Conference on Flow-Induced Vibration. FIV 2000 Luzern (Schweiz), S. 545–554. Balkema, Rotterdam (2000)Google Scholar
  38. 38.
    Pettigrew, M.J., Tromp, J.H., et al.: Vibration of tube bundles in two-phase cross-flow. Part 1: hydrodynamic mass and damping. Part 2: fluid-elastic instability. Trans. ASME J. Press. Vessel. Technol. 111, 466–487 (1989b)CrossRefGoogle Scholar
  39. 39.
    Pettigrew, M.J., Taylor, C.E., et al.: Vibration of tube bundles in two-phase Freon cross-flow. In: ASME PVP Conference on Flow-Induced Vibration, Bd. 273, S. 211–226, Minneapolis (1994)Google Scholar
  40. 40.
    Taylor, C.E., Pettigrew, M.: Effect of flow regime and void fraction on tube bundle vibration. In: Ziada, S., Staubli, T. (Hrsg.) Proceedings of 7th International Conference on Flow-Induced Vibration FIV 2000, Luzern (Schweiz) 2000, S. 529–536. Balkema, Rotterdam (2000)Google Scholar
  41. 41.
    Pettigrew, M.J., Taylor, C.E.: Two-phase flow-induced vibration: An overview. J. Press. Vessel. Technol. 116, 233–253 (1994)CrossRefGoogle Scholar
  42. 42.
    Ziada, S., Oengören, A.: Acoustic and tube resonances in tube bundles. Ber. Nr. SAK\TB92-63. Sulzer Innotec, Winterthur (1992a)Google Scholar
  43. 43.
    Oengören, A., Ziada, S.: Vortex shedding, acoustic resonance and turbulent buffeting in normal triangular tube arrays. In: Bearman, P. (Hrsg.) 6th International Conference on Flow-Induced Vibration London 1995, S. 295–313. Balkema, Rotterdam (Niederlande) (1995)Google Scholar
  44. 44.
    Oengören, A., Ziada, S.: Unsteady fluid forces acting on a square tube bundle in air cross-flow. In: ASME International Symposium on Flow-Induced Vibration and Noise, Bd. 1, S. 55–74, Anaheim (1992a)Google Scholar
  45. 45.
    Weaver, D.S.: Vortex shedding and acoustic resonance in heat exchanger tube arrays. Technology for the 90s, Kap. 6, S. 776–810. ASME Publication, New York (1993)Google Scholar
  46. 46.
    Axisa, F., Antunes, J., Villard, B.: Random excitation of heat exchanger tubes by cross-flows. J. Fluids Struct. 4(3), 321–341 (1990)CrossRefGoogle Scholar
  47. 47.
    Pettigrew, M.J., Yetisir, M., et al.: Prediction of vibration and fretting-wear damage: an energy approach. In: ASME PVP Conference on Flow-Induced Vibration, Bd. 389, S. 283–290, Boston (1999). (s. auch S. 273–282)Google Scholar
  48. 48.
    Ziada, S., Bolleter, U., Chen, Y.N.: Vortex shedding and acoustic resonance in a staggered-yawed array of tubes. In: Païdoussis, M.P., et al. (Hrsg.) SME Symposium on Flow-Induced Vibrations, Bd. 2, S. 227–242, New Orleans Louisiana (1984)Google Scholar
  49. 49.
    Ziada, S.: Vorticity shedding and acoustic resonance of tube bundles. J. Braz. Soc. Mech. Sci. Eng. 28, 186–199 (2006)CrossRefGoogle Scholar
  50. 50.
    Oengören, A., Ziada, S.: Low periodicity and acoustic resonance in parallel triangular tube bundles. In: ASME AD 53-2. 4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise, II, Dallas, Texas, S. 183–192 (1997). (s. auch Ziada S, Oengören A (2000) Flow periodicity . . . J. Fluids and Structures 14:197–219)Google Scholar
  51. 51.
    Weaver, D.S., Lian, H.Y., Huang, X.Y.: Vortex shedding in rotated square tube arrays. J. Fluids Struct. 7, 107–121 (1993)CrossRefGoogle Scholar
  52. 52.
    Ziada, S., Oengören, A.: Vorticity shedding and acoustic resonance in an in-line tube bundle. J. Fluids Struct. 6(3), 271–292 (1992b)CrossRefGoogle Scholar
  53. 53.
    Ziada, S., Oengören, A.: Vortex shedding in an in-line tube bundle with large tube spacings. J. Fluids Struct. 7, 661–687 (1993)CrossRefGoogle Scholar
  54. 54.
    Pettigrew, M.J., Gorman, D.J.: Vibration of heat exchanger tube bundles in liquid and two-phase cross-flow. In: Chen, P.Y. (Hrsg.) Flow-Induced Vibration Design Guidelines, 52. ASME PVP, S. 89–110 (1981)Google Scholar
  55. 55.
    Pettigrew, M.J.: Flow-induced vibration phenomena in nuclear power station components. Power Ind. Res. 1, 97–133 (1981)Google Scholar
  56. 56.
    Ziada, S., Oengören, A., Bühlmann, E.T.: On acoustical resonance in tube arrays. Part I: experiments. J. Fluids Struct. 3(3), 293–314 (1989b)CrossRefGoogle Scholar
  57. 57.
    Oengören, A., Ziada, S.: Vorticity shedding and acoustic resonance in an in-line tube bundle. Part II: acoustic resonance. J. Fluids Struct. 6(3), 293–309 (1992b)CrossRefGoogle Scholar
  58. 58.
    Chen, Y.N.: Flow-induced vibration and noise in tube bank heat exchangers due to von Karman streets. ASME J. Eng. Ind. 90, 134–146 (1968)CrossRefGoogle Scholar
  59. 59.
    Fitzpatrick, J.A.: A design guide proposal for avoidance of acoustic resonances in in-line heat exchangers. ASME J. Vib. Acoust. Stress Reliab. Des. 108, 296–300 (1986)CrossRefGoogle Scholar
  60. 60.
    Ziada, S., Oengören, A., Bühlmann, E.T.: On acoustical resonance in tube arrays. Part II: damping criteria. J. Fluids Struct. 3, 315–324 (1989c)CrossRefGoogle Scholar
  61. 61.
    Chen, Y.N., Young, W.C.: Damping capability of tube banks against vortex-excited sonic vibration. ASME J. Eng. Ind. 96, 1072–1075 (1974)CrossRefGoogle Scholar
  62. 62.
    Eisinger, F.L., Sullivan, R.E., Francis, J.T.: A review of acoustic vibration criteria compared to inservice experience with steam generator in-line tube banks. In: ASME International Symposium. on Flow-Induced Vibration and Noise, Bd. 4, S. 81–95, Anaheim (1992)Google Scholar
  63. 63.
    Eisinger, F.L., Francis, J.T., Sullivan, R.E.: Prediction of acoustic vibration in steam generator and heat exchanger tube banks. In: ASME PVP Conference on Flow-Induced Vibration, Bd. 273, S. 67–83, Minneapolis (1994)Google Scholar
  64. 64.
    Mohr, U.: Einfluß von Geometrie und Geschwindigkeitsverteilung auf die Schwingungsanregung von Rohrbündel-Wärmeübertragern. Fortschr.-Ber. VDI, Reihe 11, Nr. 304. VDI Verlag, Düsseldorf (2001)Google Scholar
  65. 65.
    Mohr, U., Gelbe, H.: Influence of the geometry in tube bundle heat exchangers on the velocity distribution and the vibration excitation. In: ASME PVP Conference on Flow-Induced Vibration, Bd. 389, S. 1–8, Boston (1999). (s. auch Mohr U, Gelbe H (2000) Velocity distribution and vibration excitation in tube bundle heat exchangers. Int J Thermal Sci 39:414–421)Google Scholar
  66. 66.
    Leyh, T.: Strömungsinduzierte Rohrbündelschwingungen in einem gasdurchströmten realen Wärmeübertrager. Dissertation, TU Berlin (1993)Google Scholar
  67. 67.
    Romberg, O.: Zum Turbulenzeinfluß auf das Schwingungsverhalten querangeströmter Rohrbündel. Fortschr.-Ber. VDI, Reihe 11, Nr. 267. VDI-Verlag, Düsseldorf (1998)Google Scholar
  68. 68.
    Taylor, C.E., Pettigrew, M.J.: Random excitation forces in heat exchanger tube bundles. In: ASME PVP Conference on Flow-Induced Vibration, Bd. 389, S. 35–42, Boston (1999)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMcMaster UniversityHamiltonKanada
  2. 2.School of EngineeringUniversity of GuelphGuelphKanada
  3. 3.BerlinDeutschland

Section editors and affiliations

  • Matthias Kind
    • 1
  1. 1.Institut für Thermische VerfahrenstechnikKarlsruher Institut für Technologie (KIT)KarslruheDeutschland

Personalised recommendations