Advertisement

Photosynthesis (NPP, NEP, Respiration)

  • X. F. Wang
  • H. B. Wang
  • X. Li
  • Y. H. Ran
Living reference work entry

Latest version View entry history

Part of the Ecohydrology book series (ECOH)

Abstract

Carbon exchange between terrestrial ecosystems and environment is paid great attention in recent decades, because it can regulate the atmospheric carbon dioxide concentration. Photosynthesis is the key process in the carbon cycle. GPP, NPP, and NEP are key variables in carbon cycle study. Thus, accurate estimation of these carbon fluxes is important for understanding the interactions between terrestrial ecosystems and atmosphere. In this chapter, we introduce measuring methods of these carbon fluxes at field scale and estimating models of these carbon fluxes based on remote sensing data at regional or global scale. The processes and key questions in these methods or models are specifically analyzed.

Keywords

Photosynthesis Remote sensing Gross primary production Carbon cycle Light using efficiency model 

References

  1. D. Ankurr et al., Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agric. For. Meteorol. 148(6), 821–838 (2008)Google Scholar
  2. M. Aubinet, Vesala, T., & Papale, D. (Eds.). Eddy covariance: a practical guide to measurement and data analysis. Springer Dordrecht Heidelberg London New York. (2012). Google Scholar
  3. D.D. Baldocchi, Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Chang. Biol. 9(4), 479–492 (2003)Google Scholar
  4. D. Baldocchi, Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–the state and future of the eddy covariance method. Glob. Chang. Biol. 20(12), 3600–3609 (2014)Google Scholar
  5. D. Baldocchi et al., FLUXNET: a new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82(11), 2415–2434 (2001)Google Scholar
  6. G. Burba, Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates (LI-Cor Biosciences, Lincoln, 2013)Google Scholar
  7. G. Burba, R. Madsen, K. Feese, Eddy covariance method for CO2 emission measurements in CCUS applications: principles, instrumentation and software. Energy Procedia 40, 329–336 (2013)Google Scholar
  8. B. Chen et al., Assessing tower flux footprint climatology and scaling between remotely sensed and Eddy covariance measurements. Bound.-Layer Meteorol. 130, 30 (2009)Google Scholar
  9. C. Daughtry, K. Gallo, M.E. Bauer, Spectral estimates of solar radiation intercepted by corn canopies. Agron. J. 75(3), 527–531 (1983)Google Scholar
  10. A.R. Desai, P.V. Bolstad, B.D. Cook, K.J. Davis, E.V. Carey, Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. Agric. For. Meteorol. 128(1), 33–55 (2005)Google Scholar
  11. A.R. Desai et al., Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agric. For. Meteorol. 148(6), 821–838 (2008)Google Scholar
  12. E. Falge et al., Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 107(1), 43–69 (2001)Google Scholar
  13. G.D. Farquhar, V.S. von von Caemmerer, J. A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 149(1), 78–90 (1980)Google Scholar
  14. G. Farquhar, S. Wong, An empirical model of stomatal conductance. Funct. Plant Biol. 11(3), 191–210 (1984)Google Scholar
  15. C. Frankenberg, C.O. Dell, L. Guanter, J. McDuffie, Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals. Atmos. Meas. Tech. 5(8), 14 (2012)Google Scholar
  16. L. Gitta et al., Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Chang. Biol. 16(1), 187–208 (2010)Google Scholar
  17. J.H. Gove, D.Y. Hollinger, Application of a dual unscented Kalman filter for simultaneous state and parameter estimation in problems of surface-atmosphere exchange. J. Geophys. Res. Atmos. 111(D8), 21 PP (2006)Google Scholar
  18. S.C. Hagen et al., Statistical uncertainty of eddy flux–based estimates of gross ecosystem carbon exchange at Howland Forest, Maine. J. Geophys. Res. Atmos. 111(D8), 811–830 (2006)Google Scholar
  19. D.M. Hammerling, A.M. Michalak, S.R. Kawa, Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D6).Google Scholar
  20. P.J. Hanson et al., Oak forest carbon and water simulations: model intercomparisons and evaluations against independent data. Ecol. Monogr. 74(3), 443–489 (2004)Google Scholar
  21. W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)Google Scholar
  22. K. Hikosaka, U. Niinemets, N.P. Anten, Canopy Photosynthesis: From Basics to Applications (Springer, Dordrecht, 2016)Google Scholar
  23. T. Hilker, N.C. Coops, M.A. Wulder, T.A. Black, R.D. Guy, The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements. Sci. Total Environ. 404(2), 411–423 (2008)Google Scholar
  24. D. Hui et al., Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agric. For. Meteorol. 121(1), 93–111 (2004)Google Scholar
  25. S. Jacquemoud et al., PROSPECT+ SAIL models: a review of use for vegetation characterization. Remote Sens. Environ. 113, S56–S66 (2009)Google Scholar
  26. J. Joiner et al., The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sens. Environ. 152, 16 (2014)Google Scholar
  27. M. Kirschbaum, D. Eamus, R. Gifford, S. Roxburgh, P. Sands, Definitions of Some Ecological Terms Commonly Used in Carbon Accounting (Cooperative Research Centre for Carbon Accounting, Canberra, 2001), pp. 2–5Google Scholar
  28. N. Kljun, P. Calanca, M.W. Rotach, H.P. Schmid, A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 8, 18 (2015)Google Scholar
  29. C. Le Quere et al., Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2(12), 831–836 (2009)Google Scholar
  30. Z. Li et al., Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data. Remote Sens. Environ. 107(3), 510–519 (2007)Google Scholar
  31. LI-COR Biosciences Using the LI-6400 / LI-6400XT Portable Photosynthesis System, 10th edition. (LI–COR Biosciences Inc.: Lincoln, 2011) Available at https://www.licor.com/env/support/product?p=6400XT [Verified 26 October 2017]
  32. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)Google Scholar
  33. A.M. Moffat et al., Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric. For. Meteorol. 147(3), 209–232 (2007)Google Scholar
  34. J. Monteith, Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9(3), 747–766 (1972)Google Scholar
  35. J.L. Monteith, C. Moss, Climate and the efficiency of crop production in Britain [and discussion]. Philos. Trans. R. Soc. Lond. B: Biolo. Sci. 281(980), 277–294 (1977)Google Scholar
  36. K. Mosegaard, M. Sambridge, Monte Carlo analysis of inverse problems. Inverse Prob. 18(3), R29 (2002)Google Scholar
  37. K.W. Oleson, D.M. Lawrence, B. Gordon, M.G. Flanner,E. Kluzek, J. Peter, , ... C.L. Heald, Technical description of version 4.0 of the Community Land Model (CLM). (2010)Google Scholar
  38. D. Papale, R. Valentini, A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob. Chang. Biol. 9(4), 525–535 (2010)Google Scholar
  39. D. Papale et al., Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3(4), 571–583 (2006)Google Scholar
  40. S. Plummer, On validation of the MODIS gross primary production product. IEEE Trans. Geosci. Remote Sens. 44, 10 (2006)Google Scholar
  41. A.S. Raghavendra, K. Padmasree, Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci. 8(11), 546–553 (2003)Google Scholar
  42. M. Reichstein et al., On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Chang. Biol. 11(9), 1424–1439 (2005)Google Scholar
  43. A.D. Richardson et al., Comparing simple respiration models for eddy flux and dynamic chamber data. Agric. For. Meteorol. 141(2), 219–234 (2006)Google Scholar
  44. S.W. Running, S.T. Gower, FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol. 9(1-2), 147–160 (1991)Google Scholar
  45. S.W. Running, P.E. Thornton, R. Nemani, J.M. Glassy, Global terrestrial gross and net primary productivity from the earth observing system. Methods Ecosyst. Sci. 3, 44–45 (2000)Google Scholar
  46. H.P. Schmid, Source areas for scalar and scalar fluxes. Bound.-Layer Meteorol. 67, 25 (1994)Google Scholar
  47. C.R. Schwalm, T.A. Black, K. Morgenstern, E.R. Humphreys, A method for deriving net primary productivity and component respiratory fluxes from tower-based eddy covariance data: a case study using a 17-year data record from a Douglas-fir chronosequence. Glob. Chang. Biol. 13(2), 370–385 (2007)Google Scholar
  48. T.D. Sharkey, C.J. Bernacchi, G.D. Farquhar, E.L. Singsaas, Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30(9), 1035–1040 (2007)Google Scholar
  49. D.A. Sims, A.F. Rahman, V.D. Cordova, B.Z. El-Masri, D.D. Baldocchi, P.V. Bolstad, L.B. Flanagan, A.H. Goldstein, D.Y. Hollinger, L. Misson, R.K. Monson, W.C. Oechel, H.P. Schmid, S.C. Wofsy, L.K. Xu, A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens. Environ. 112, 14 (2008)Google Scholar
  50. S. Sitch et al., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 9(2), 161–185 (2003)Google Scholar
  51. V. Stauch, A. Jarvis, A semi-parametric gap-filling model for eddy covariance CO2 flux time series data. Glob. Chang. Biol. 12(9), 1707–1716 (2006)Google Scholar
  52. J.R. Stinziano et al., The rapid A-Ci response: photosynthesis in the phenomic era. Plant Cell Environ. 40, 1256–1262 (2017)Google Scholar
  53. P.C. Stoy et al., An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agric. For. Meteorol. 141(1), 2–18 (2006)Google Scholar
  54. P. Thornton et al., Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric. For. Meteorol. 113(1), 185–222 (2002)Google Scholar
  55. C.J. Tucker, Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8(2), 127–150 (1979)Google Scholar
  56. M. Verma et al., Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. J. Geophys. Res. Biogeo. 122, 17 (2017)Google Scholar
  57. F. Veroustraete, H. Sabbe, H. Eerens, Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens. Environ. 83(3), 376–399 (2002)Google Scholar
  58. P. Wagle, Y. Zhang, C. Jin, X. Xiao, Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize. Ecol. Appl. 26(4), 11 (2016)Google Scholar
  59. X. Wang et al., Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin, China. Int. J. Appl. Earth Obs. Geoinf. 17, 94–101 (2012)Google Scholar
  60. X. Wang et al., Validation of MODIS-GPP product at 10 flux sites in northern China. Int. J. Remote Sens. 34(2), 587–599 (2013)Google Scholar
  61. C.Y. Wu, Z. Niu, J. Tang, W.J. Huang, Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices. Agric. For. Meteorol. 149, 7 (2009a)Google Scholar
  62. X. Wu et al., Conditional inversion to estimate parameters from eddy-flux observations. J. Plant Ecol. 2(2), 55–68 (2009b)Google Scholar
  63. C.Y. Wu, X.Z. Han, J.S. Ni, Z. Niu, W. Huang, Estimation of gross primary production in wheat from in situ measurements. Int. J. Appl. Earth Obs. Geoinf. 12, 7 (2010)Google Scholar
  64. X. Xiao et al., Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 89(4), 519–534 (2004)Google Scholar
  65. X. Xiao, Q. Zhang, D. Hollinger, J. Aber, B. Moore, Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecol. Appl. 15(3), 954–969 (2005)Google Scholar
  66. T. Xu, L. White, D. Hui, Y. Luo, Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Glob. Biogeochem. Cycles. 20(2) (2006)Google Scholar
  67. Z. Xu et al., Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J. Geophys. Res. Atmos. 118(23) (2013)Google Scholar
  68. H. Yan et al., Modeling gross primary productivity for winter wheat–maize double cropping system using MODIS time series and CO 2 eddy flux tower data. Agric. Ecosyst. Environ. 129(4), 391–400 (2009)Google Scholar
  69. Yang X, Tang J, Mustard J.F, et al. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest[J]. Geophysical Research Letters. 42(8): 2977–2987 (2015)Google Scholar
  70. C. Yi et al., A nonparametric method for separating photosynthesis and respiration components in CO 2 flux measurements. Geophys. Res. Lett. 31(17), 123–138 (2004)Google Scholar
  71. W. Yuan et al., Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 114(7), 1416–1431 (2010)Google Scholar
  72. Y.Q. Zhang, Q. Yu, J. Jiang, Y.H. Tan, Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Glob. Chang. Biol. 14, 10 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Heihe Remote Sensing Experimental Research StationNorthwest Institute of Eco-Environment and Resources, Chinese Academy of SciencesLanzhouChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations