Advertisement

From Newton’s Law of Gravitation to Multiscale Geoidal Determination and Ocean Circulation Modeling

  • Willi FreedenEmail author
  • Helga Nutz
Living reference work entry
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Das Ziel dieses Beitrags ist die Dokumentation der bahnbrechenden Dimension der Arbeiten von Newton um seine Vermittlerrolle zwischen klassischer Gravitationstheorie und den heutigen Multiskalenkonzepten bei Geoidbestimmung und Modellierung der Ozeanzirkulation zu demonstrieren.

Keywords

Newton’s law of gravitation Potential theory Geodetic boundary value problem Geoidal determination Ocean circulation 

Abstract

The objective of this contribution is the documentation of the pioneer dimension of Newton’s work to demonstrate his mediating role between classical gravitational theory and today’s multiscale concepts of geoidal determination and ocean circulation modeling.

References

  1. 1.
    Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften, vol. 314. Springer, Berlin (1996)Google Scholar
  2. 2.
    Albertella, A., Savcenko, R., Bosch, W., Rummel, R.: Dynamic Ocean Topography – The Geodetic Approach, vol. 27. Schr-r Inst für Astron Phys Geod Forsch-einricht Satell-geod, TU München, München (2008)Google Scholar
  3. 3.
    Ansorge, R., Sonar, T.: Mathematical Models of Fluid Dynamics. Wiley, Weinheim (2009)CrossRefGoogle Scholar
  4. 4.
    Augustin, M., Freeden, W.: A survey on classical boundary value problems in physical geodesy. In: Grafarend, E.W. (ed.) Encyclopedia of Geodesy, pp. 1–7. Springer International Publishing, Switzerland (2015)Google Scholar
  5. 5.
    Augustin, M., Freeden, W., Nutz, H.: About the importance of the Runge–Walsh concept for physical geodesy. In: Handbook of Mathematical Geodesy (in print)Google Scholar
  6. 6.
    Bjerhammar, A.: Gravity Reduction to an Internal Sphere. Division of Geodesy, Stockholm (1962)Google Scholar
  7. 7.
    Bruns, H.: Die Figur der Erde “Ein Beitrag zur europäischen Gradmessung”. P. Stankiewicz, Berlin (1878)Google Scholar
  8. 8.
    Cui J., Freeden W.: Equidistribution on the sphere. SIAM J. Sci. Stat. Comput. 18, 595–609 (1997)CrossRefGoogle Scholar
  9. 9.
    Fehlinger, T.: Multiscale formulations for the disturbing potential and the deflections of the vertical in locally reflected physical geodesy. Ph.D-Thesis, Geomathematics Group, University of Kaiserslautern (2009)Google Scholar
  10. 10.
    Fehlinger, T., Freeden, W., Gramsch, S., Mayer, C., Michel, D., Schreiner, M.: Local modelling of sea surface topography from (geostrophic) ocean flow. ZAMM 87, 775–791 (2007)CrossRefGoogle Scholar
  11. 11.
    Freeden, W.: Über eine Verallgemeinerung der Hardy–Landauschen Identität. Manuscr. Math. 24, 205–216 (1978)CrossRefGoogle Scholar
  12. 12.
    Freeden, W.: Über eine Klasse von Integralformeln der mathematischen Geodäsie. Verff Geod Inst RWTH Aachen, 27 (1979)Google Scholar
  13. 13.
    Freeden, W.: On the approximation of external gravitational potential with closed systems of (trial) functions. Bull. Géod. 54, 1–20 (1980)CrossRefGoogle Scholar
  14. 14.
    Freeden, W.: Geomathematics: its role, its aim, and its potential. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 3–79. Springer, New York/Berlin/Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman and Hall/CRC Press, Boca Raton/London/New York (2013)Google Scholar
  16. 16.
    Freeden, W., Gutting, M.: Integration and Cubature Methods. Chapman and Hall/CRC Press, Boca Raton/London/New York (2018)Google Scholar
  17. 17.
    Freeden, W., Kersten, H.: The Geodetic Boundary-Value Problem Using the Known Surface of the Earth, vol. 29. Veröff Geod Inst RWTH Aachen, Aachen (1980)Google Scholar
  18. 18.
    Freeden, W., Kersten, H.: A constructive approximation theorem for the oblique derivative problem in potential theory. Math. Methods Appl. Sci. 4, 104–114 (1981)CrossRefGoogle Scholar
  19. 19.
    Freeden, W., Maier, T.: On multiscale denoising of spherical functions: basic theory and numerical aspects. Electron. Trans. Numer. Anal. 14, 56–78 (2002)Google Scholar
  20. 20.
    Freeden, W, Maier, T.: Spectral and multiscale signal-to-noise thresholding of spherical vector fields. Comput. Geosci. 7, 215–250 (2003)CrossRefGoogle Scholar
  21. 21.
    Freeden, W., Mayer, C.: Multiscale Solution for the molodensky problem on regular telluroidal surfaces. Manuscr. Math. Acta Geod. Geophys. Hung. 41, 55–86 (2006)CrossRefGoogle Scholar
  22. 22.
    Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston (2004)CrossRefGoogle Scholar
  23. 23.
    Freeden, W., Schreiner, M.: Local multiscale modelling of geoid undulations from deflections of the vertical. J. Geod. 79, 641–651 (2006)CrossRefGoogle Scholar
  24. 24.
    Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences – A Scalar, Vecterial, and Tensorial Setup. Springer, Heidelberg (2009)Google Scholar
  25. 25.
    Freeden, W., Wolf, K.: Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math. Semesterb. 56, 53–77 (2009)CrossRefGoogle Scholar
  26. 26.
    Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publications/Clarendon, Oxford (1998)Google Scholar
  27. 27.
    Freeden, W., Michel, D., Michel, V.: Local multiscale approximation of geostrophic oceanic flow: theoretical backgroundhe and aspects of scientific computing. Mar. Geod. 28, 313–329 (2005)CrossRefGoogle Scholar
  28. 28.
    Fehlinger, T., Freeden, W., Klug, M., Mathar, D., Wolf, K.: Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J. Geodesy 83, 1171–1191 (2009)CrossRefGoogle Scholar
  29. 29.
    Gauss, C.F.: Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des magnetischen Vereins, Göttingen (1838)Google Scholar
  30. 30.
    Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: Theory and application to geomagnetic modeling. Ph.D-Thesis, Geomathematics Group, University of Kaiserslautern (2011)Google Scholar
  31. 31.
    Grafarend, C.F., Klapp, M., Martinec, M.: Spacetime modeling of the earths gravity field by ellipsoidal harmonics. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd ed., pp. 381–496. Springer, New York/Berlin/Heidelberg (2015)CrossRefGoogle Scholar
  32. 32.
    Green, G.: An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. T. Wheelhouse, Nottingham (1838)Google Scholar
  33. 33.
    Groten, E.: Geodesy and the Earth’s Gravity Field I + II. Dümmler, Bonn (1979)Google Scholar
  34. 34.
    Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)Google Scholar
  35. 35.
    Hofmann–Wellenhof, B., Moritz, H.: Physical Geodesy, 2nd edn. Springer, Wien/New York (2006)Google Scholar
  36. 36.
    Hörmander, L.: The Boundary Problems of Physical Geodesy. The Royal Institute of Technology, Division of Geodesy, Report 9, Stockholm (1975)Google Scholar
  37. 37.
    Hotine, M.: Mathematical Geodesy. ESSA Monography, vol. 2. U.S. Department of Commerce, Washington (1969); Reprint 1992 by SpringerGoogle Scholar
  38. 38.
    Jekeli, C.: An analysis of deflections of the vertical derived from high-degree spherical harmonic models. J. Geod. 73, 10–22 (1999)CrossRefGoogle Scholar
  39. 39.
    Kellogg, O.D.: Foundations of Potential Theory. Frederick Ungar Publishing Company, New York (1929)CrossRefGoogle Scholar
  40. 40.
    Koch, K.R., Pope, A.J.: Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bulletin Géodeséque 106, 467–476 (1972)CrossRefGoogle Scholar
  41. 41.
    Krarup, T.: A Contribution to the Mathematical Foundation of Physical Geodesy. Danish Geodetic Institute, Report No. 44, Copenhagen (1969)Google Scholar
  42. 42.
    Krarup, T.: Letters on Molodensky’s Problem I-IV. Communication to the members of the IAG Special Study Group 4.31 (1973)Google Scholar
  43. 43.
    Laplace, P.S.: Traité de mécanique céleste. Tome 2, Paris (1799)Google Scholar
  44. 44.
    Listing, J.B.: Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Dietrichsche Verlagsbuchhandlung, Göttingen (1873)Google Scholar
  45. 45.
    Listing, J.B.: Neue geometrische und dynamische Constanten des Erdkörpers. Nachr Königl Ges Wiss & Georg-August-Univ Göttingen, Dietrichsche Verlagsbuchhandlung, pp. 749–815 (1878)Google Scholar
  46. 46.
    Maire, Ch., Boscović, R.J.: De Litteraria Expeditione per Pontificiam Ditionem ad Dimentiendos duos Meridiani Gradus. In typographio Palladis, excudebant Nicolaus, et Marcus Palearini, Romae, pp. 409–503 (1755)Google Scholar
  47. 47.
    Markina, I., Vodopyanov, S.K.: Fundamentals of the nonlinear potential theory for subelliptic equations. I, II. Siberian Adv. Math. 7, 32–62 (1997)Google Scholar
  48. 48.
    Maximenko, N., Niiler, P., Rio, M.-H., Melnichenko, O., Centurioni, L., Chambers, D., Zlotnicki, V., Galperin, B.: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Ocean Tech. 26, 1910–1919 (2009)CrossRefGoogle Scholar
  49. 49.
    Molodensky, M.S., Eremeev, V.F., Yurkina, M.I.: Methods for study of the external gravitational field and figure of the earth, p. 131. Trudy TSNIIGAiK, Geodezizdat, Moscow (1960) (English trans: Israel Program for Scientific Translation, Jerusalem (1962))Google Scholar
  50. 50.
    Moritz, H.: Der Begriff der mathematischen Erdgestalt seit Gauss. Allgemeine Vermessungs-Nachrichten, 133–138 (1977)Google Scholar
  51. 51.
    Moritz, H.: Advanced Physical Geodesy. Wichmann Verlag, Karlsruhe (1980)Google Scholar
  52. 52.
    Moritz, H.: Advanced Physical Geodesy, 2nd edn. Wichmann, Karlsruhe (1989)Google Scholar
  53. 53.
    Moritz, H.: Classical Physical Geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 1st edn., pp. 127–158. Springer, New York/Berlin/Heidelberg (2010)Google Scholar
  54. 54.
    Moritz, H.: Classical physical geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 253–290. Springer, New York/Berlin/Heidelberg (2015)CrossRefGoogle Scholar
  55. 55.
    Nerem, R.S., Koblinski, C.J.: The Geoid and Ocean Circulation. In: Vancek, P., Christou, N.T. (eds.) Geoid and Its Geophysical Interpretations. CRC Press, Boca Raton (1994)Google Scholar
  56. 56.
    Neumann, F.: Vorlesungen über die Theorie des Potentials und der Kugelfunktionen, pp. 135–154. Teubner, Leipzig (1887)Google Scholar
  57. 57.
    Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1979)CrossRefGoogle Scholar
  58. 58.
    Petrini, H.: Sur l’existence des derivees secondes du potentiel. C. R. Acad. Sci. Paris 130, 233–235 (1900)Google Scholar
  59. 59.
    Pick, M., Pícha, J., Vyskočil, V.: Theory of the Earth’s Gravity Field. Elsevier Scientific Publishing Company, Amsterdam (1973)Google Scholar
  60. 60.
    Pizzetti, P.: Sopra il Calcoba Tesrico delle Deviazioni del Geoide dall’ Ellissoide. Att. R Accad. Sci. Torino 46, 331–350 (1910)Google Scholar
  61. 61.
    Rummel, R.: Geodesy. In: Nierenberg, W.A. (ed.) Encyclopedia of Earth System Science, vol. 2, pp. 253–262. Academic Press, San Diego (1992)Google Scholar
  62. 62.
    Runge, C.: Zur Theorie der eindeutigen analytischen Funktionen. Acta Math. 6, 229–234 (1885)CrossRefGoogle Scholar
  63. 63.
    Sanso, F.: A note on density problems and the Runge Krarup’s Theorem. Bolletino di Geodesia e Science Affini 41, 422–477 (1982)Google Scholar
  64. 64.
    Stokes, G.G.: On the variation of gravity on the surface of the earth. Trans. Camb. Phil. Soc. 8, 672–695 (1849)Google Scholar
  65. 65.
    Todhunter, I.: A history of the mathematical theories of attraction and of the figure on the Earth from the time of Newton to that of Laplace. Macmillan, London (1878); Reprint 1962 by Dover Publications, New YorkGoogle Scholar
  66. 66.
    Torge, W.: Geodesy, 2nd edn. de Gruyter, Berlin (1991)CrossRefGoogle Scholar
  67. 67.
    Vening Meinesz, F.A.: A formula expressing the deflection of the plumb-line in the gravity anomalies and some formulae for the gravity field and the gravity potential outside the geoid. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 31(3):315–331 (1928)Google Scholar
  68. 68.
    Vekua, I.N.: Über die Vollständigkeit des Systems harmonischer Polynome im Raum. Dokl. Akad. Nauk 90, 495–498 (1953)Google Scholar
  69. 69.
    Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc. 35, 499–544 (1929)CrossRefGoogle Scholar
  70. 70.
    Wangerin, A.: Theorie des Potentials und der Kugelfunktionen. Walter de Gruyter & Co, Berlin/Leipzig (1921)Google Scholar
  71. 71.
    Wermer, J.: Potential Theory. Lecture Notes in Mathematics, vol. 408. Springer, Berlin (1974)Google Scholar
  72. 72.
    Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77, 313–352 (1916)CrossRefGoogle Scholar
  73. 73.
    Wolf, K.: Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets. Ph.D-Thesis, Geomathematics Group, University of Kaiserslautern (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Geomathematics GroupUniversity of KaiserslauternKaiserslauternGermany
  2. 2.CBM – Gesellschaft für Consulting, Business und Mangagement mbHBexbachGermany

Section editors and affiliations

  • Willi Freeden
    • 1
  1. 1.Geomathematics GroupUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations