Advertisement

Inverse Probleme der Geodäsie

Ein Abriss mathematischer Lösungsstrategien
  • Willi FreedenEmail author
  • Helga Nutz
Living reference work entry
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Der vorliegende Beitrag beschäftigt sich mit mathematischen Lösungspotentialen und Strategien für inverse Probleme in der Geodäsie. Die Dilemmata hinsichtlich Existenz, Eindeutigkeit und Stabilität eines Lösungsprozesses werden beschrieben. Die Notwendigkeit zur Regularisierung wird herausgestellt, spezifische Eigenschaften der Regularisierungsverfahren werden kurz skizziert.

Schlüsselwörter

Geomathematik als Schlüsseltechnologie geodätischer Erkundung Gradiometrie Gravimetrie Aufgabenstellungen und Lösungspotentiale Strategien und Dilemmata 

Abstract

This contribution is concerned with mathematical potentials and strategies for the solution of inverse problems in geodesy. The dilemmata with respect to existence, uniqueness, and stability of a solution process are described. The need of regularization is pointed out, specific properties of regularization procedures are briefly sketched.

Literatur

  1. 1.
    Anger, G.: A characterization of the inverse gravimetric source problem through extremal measures. Rev. Geophys. Space Phys. 19, 299–306 (1981)CrossRefGoogle Scholar
  2. 2.
    Augustin, M., Bauer, M., Blick, C., Eberle, S., Freeden, W., Gerhards, C., Ilyasov, M., Kahnt, R., Klug, M., Möhringer, S., Neu, T., Nutz, H., Ostermann, I., Punzi, A.: Modeling deep geothermal reservoirs: Recent advances and future perspectives. In: Freeden, W., Sonar, T., Nashed, Z. (Hrsg.) Handbook of Geomathematics, 2. Aufl., S. 1547–1629. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    Augustin, M., Freeden, W., Nutz, H.: About the importance of the Runge-Walsh concept for gravitational field determination. In: Freeden, W., Nashed, M.Z. (Hrsg.) Handbook of Mathematical Geodesy. Geosystems Mathematics. Springer, Basel/New York/Heidelberg (2018)Google Scholar
  4. 4.
    Bauer, M., Freeden, W., Jacobi, H., Neu, T. (Hrsg.): Handbuch Tiefe Geothermie: Prospektion, Exploration, Realisierung, Nutzung. Springer, Berlin/Heidelberg (2014)Google Scholar
  5. 5.
    Baumeister, J.: Stable Solution of Inverse Problems. Vieweg, Braunschweig (1987)CrossRefGoogle Scholar
  6. 6.
    Blakely, R.J.: Potential Theory in Gravity and Magnetic Application. Cambridge University Press, Cambridge (1996)Google Scholar
  7. 7.
    Blick, C.: Multiscale potential methods in geothermal research: Decorrelation reflected post-processing and locally based inversion. PhD thesis, AG Geomathematik, University of Kaiserslautern (2015)Google Scholar
  8. 8.
    Blick, C., Freeden, W., Nutz, H.: Feature extraction of geological signatures by multiscale gravimetry. GEM Int. J. Geomath. 8(1), 57–83 (2017)CrossRefGoogle Scholar
  9. 9.
    Blick, C., Freeden, W., Nutz, H.: Innovative Explorationsmethoden am Beispiel der Gravimetrie und Reflexionsseismik. In: Bauer, M., Freeden, W., Jacobi, H., Neu, T. (Hrsg.) Handbuch Oberflächennahe Geothermie. Springer Spektrum, Heidelberg (2018)Google Scholar
  10. 10.
    Björck, A., Elden, L.: Methods in numerical algebra for ill-posed problems. In: Ill-Posed Problems: Theory and Practice. Reidel, Dodrecht/Boston (1981)Google Scholar
  11. 11.
    Engl, H.: Integralgleichungen. Springer, Berlin (1997)CrossRefGoogle Scholar
  12. 12.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  13. 13.
    Engl, H., Louis, A.K., Rundell, W. (Hrsg.): Inverse Problems in Geophysical Applications. SIAM, Philadelphia (1997)Google Scholar
  14. 14.
    Freeden, W.: Geomathematics: Its role, its aim, and its potential. In: Freeden, W., Nashed, M.Z., Sonar, T. (Hrsg.) Handbook of Geomathematics, Bd. 1, 2. Aufl., S. 3–78. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Freeden, W.: Multiscale Modelling of Speaceborne Geodata. Teubner, Stuttgart (1999)Google Scholar
  16. 16.
    Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World Min. 65, 1–15 (2013)Google Scholar
  17. 17.
    Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. CRC Press/Taylor & Francis, Boca Raton (2013)Google Scholar
  18. 18.
    Freeden, W., Nashed, M.Z.: Operator-theoretic and regularization approaches to Ill-posed problems. GEM Int. J. Geomath. (2017). https://doi.org/10.1007/s13137-017-0100-0 Google Scholar
  19. 19.
    Freeden, W., Nashed, M.Z. (Hrsg.): Ill-posed problems: Operator methodologies of resolution and regularization approaches. In: Handbook of Mathematical Geodesy. Geosystems Mathematics. Springer, Basel/New York/Heidelberg (2018)Google Scholar
  20. 20.
    Freeden, W., Nutz, H.: Satellite gravity gradiometry as tensorial inverse problem. GEM Int. J. Geomath. 2, 177–218 (2011)CrossRefGoogle Scholar
  21. 21.
    Freeden, W., Nutz, H.: Mathematik als Schlüsseltechnologie zum Verständnis des Systems ,,Tiefe Geothermie“. Jahresber. Deutsch. Math. Vereinigung (DMV) 117, 45–84 (2015)CrossRefGoogle Scholar
  22. 22.
    Freeden, W., Nutz, H.: Mathematische Lösungspotentiale, Strategien und Dilemmata. In: Bauer, M., Freeden, W., Jacobi, H., Neu, T. (Hrsg.) Handbuch Oberflächennahe Geothermie, S. 257–279. Springer Spektrum, Heidelberg (2018)CrossRefGoogle Scholar
  23. 23.
    Freeden, W., Nutz, H.: Geodetic observables and their mathematical treatment in multiscale framework. In: Freeden, W., Nashed, M.Z. (Hrsg.) Handbook of Mathematical Geodesy. Geosystems Mathematics. Springer, Basel/New York/Heidelberg (2018)CrossRefGoogle Scholar
  24. 24.
    Freeden, W., Nutz, H., Schreiner, M.: Geomathematical advances in satellite gravity gradiometry. In: Freeden, W., Nashed, M.Z. (Hrsg.) Handbook of Mathematical Geodesy. Geosystems Mathematics. Springer, Basel/New York/Heidelberg (2018)CrossRefGoogle Scholar
  25. 25.
    Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston (1984)Google Scholar
  26. 26.
    Hadamard, J.: Sur les problèmes aux dérivés partielles et leursignification physique. Princeton Univ. Bull. 13, 49–52 (1902)Google Scholar
  27. 27.
    Hadamard, J.: Lectures on the Cauchy Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)Google Scholar
  28. 28.
    Kammerer, W.J., Nashed, M.Z.: Iterative methods for best approximate solutions of linear integral equation of the first and second kind. J. Math. Anal. Appl. 40, 547–573 (1972)CrossRefGoogle Scholar
  29. 29.
    Kellogg, O.D.: Foundations of Potential Theory. Frederick Ungar Publishing Company, New York (1929)CrossRefGoogle Scholar
  30. 30.
    Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  31. 31.
    Lieusternik, L.A., Sobolev, V.J.: Elements of Functional Analysis. Ungar, New York (1961)Google Scholar
  32. 32.
    Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)CrossRefGoogle Scholar
  33. 33.
    Marti, J.T.: On the convergence of an algorithm computing minimum-norm solutions of ill-posed problems. Math. Comput. 34, 521–527 (1980)CrossRefGoogle Scholar
  34. 34.
    Möhringer, S.: Deccorrelation of gravimetric data. PhD thesis, AG Geomathematik. TU Kaiserslautern (2014)Google Scholar
  35. 35.
    Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)CrossRefGoogle Scholar
  36. 36.
    Nashed, M.Z.: Generalized inverse, normal solvability and iteration for singular operator equations. In: Rall, L.B. (Hrsg.) Nonlinear Functional Analysis and Applications, S. 311–359. Academic, New York (1971)CrossRefGoogle Scholar
  37. 37.
    Nashed, M.Z. (Hrsg.): Generalized Inverses and Applications. Academic, New York (1976)Google Scholar
  38. 38.
    Nashed, M.Z.: Aspects of generalized inverses in analysis and regularization. In: Generalized Inverses and Applications, S. 193–244. Academic Press, New York (1976)CrossRefGoogle Scholar
  39. 39.
    Nashed, M.Z.: On moment-discretization and least-squares solutions of linear integration equations of the first kind. J. Math. Anal. Appl. 53, 359–366 (1976)CrossRefGoogle Scholar
  40. 40.
    Nashed, M.Z.: Operator-theoretic and computational approaches to ill-posed problems with application to antenna theory. IEEE Trans. Antennas Propag. 29, 220–231 (1981)CrossRefGoogle Scholar
  41. 41.
    Nashed, M.Z.: Analysis and implementation of projection-regularization methods for ill-posed problems. In: Ill-Posed Problems: Theory and Practice. Reidel, Dordrecht/Boston (1981)Google Scholar
  42. 42.
    Nashed, M.Z., Wahba, G.: Convergence rate of approximate solutions to linear operator equations of the first kind. Math. Comput. 28, 69–80 (1974)CrossRefGoogle Scholar
  43. 43.
    Nashed, M.Z., Wahba, G.: Regularization and approximation of linear operator equations in reproducing kernel spaces. Bull. Am. Math. Soc. 80, 1213–1218 (1974)CrossRefGoogle Scholar
  44. 44.
    Nashed, M.Z., Scherzer, O.: Inverse Problems, Image Analysis and Medical Imaging (Contemporary Mathematics), Bd. 313. American Methematical Society, Providence (2002)CrossRefGoogle Scholar
  45. 45.
    Nettleton, L.L.: Gravity and Magnetics in Oil Prospecting. McGraw-Hill Book Company, Inc., New York (1976)Google Scholar
  46. 46.
    Natterer, F.: The finite element method for ill-posed problems. RAIRO Anal. Numer. 11, 271–278 (1977)CrossRefGoogle Scholar
  47. 47.
    Rummel, R.: Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Rummel, R., Sanso, F. (Hrsg.) Lecture Notes in Earth Science, Bd. 65, S. 359–404. Springer, Berlin (1997)Google Scholar
  48. 48.
    Rummel, R., van Gelderen, M., Koop, R., Schrama, E., Sansó, F., Brovelli, M., Miggliaccio, F., Sacerdote, F.: Spherical harmonic analysis of satellite gradiometry. New Series, Bd. 39. Netherlands Geodetic Commission, Delft (1993)Google Scholar
  49. 49.
    Song, M.: Regularization-projection methods and finite element approximations for ill-posed linear operator equations. PhD thesis, University Michigan (1978)Google Scholar
  50. 50.
    Strand, O.N.: Theory and methods related to the singular function expansion and Landweber’s iteration for integral equations of the first kind. SIAM J. Numer. Anal. 11, 798–825 (1974)CrossRefGoogle Scholar
  51. 51.
    Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 195–198 (1943)Google Scholar
  52. 52.
    Tikhonov, A.N.: On the solution of incorrectly formulated problems and the regularization method. Dokl. Akad. Nauk SSSR 151, 501–504 (1963)Google Scholar
  53. 53.
    Varah, J.: On the numerical solution of ill-conditioned linear systems with applications to ill-posed problems. SIAM J. Numer. Anal. 10, 257–267 (1973)CrossRefGoogle Scholar
  54. 54.
    Zidarov, D.P.: Inverse Gravimetric Problem in Geoprospecting and Geodesy. Developments in Solid Earth Geopyhsics, Bd. 19. Elsevier, Amsterdam/Oxford/New York (1990)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Arbeitsgruppe Geomathematik, Fachbereich MathematikTU KaiserslauternKaiserslauternDeutschland
  2. 2.CBM – Gesellschaft für Consulting, Business und Mangagement mbHBexbachDeutschland

Personalised recommendations