Advertisement

Mathematical Geodesy

Its Role, Its Aim, and Its Potential
  • Willi FreedenEmail author
  • Michael Schreiner
Living reference work entry
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Während der letzten Dekaden war Geodäsie von zwei wesentlichen Szenarien beeinflusst: Zum einen hat der technologische Fortschritt die Beobachtungs- und Messmethoden vollständig geändert. Moderne Hochleistungsrechner und satellitenbasierte Techniken kamen mehr und mehr zum Zuge. Zum anderen gab es eine wachsende Besorgnis in der Bevölkerung um die Zukunft unseres Planeten, d. h. den Wechsel seines Klimas, die Belange seiner Umwelt und die erwartete Verknappung seiner natürlicher Ressourcen.

Alle diese Aspekte implizier(t)en simultan den starken Bedarf an adäquaten mathematischen Strukturen, Hilfsmitteln und Methoden, kurzum an Geomathematik.

Der vorliegende Beitrag beschäftigt sich mit den heutigen methodologischen Komponenten des Kreislaufs Mathematische Geodäsie, der die gegenseitige Interrelation von Geodäsie und Geomathematik bezüglich Ursprung und Grundlegung, konstituierender Bestandteile, wissenschaftlicher Rolle sowie perspektivi- schem Potential charakterisiert.

Dieser einleitende Beitrag stellt eine Sammlung bekannter Ideen und Konzepte aus verschiedenen Quellen geodätisches und geomathematisches Literatur dar, allerdings in einer neuartigen konsistenten Zusammenstellung und innovativ strukturierten Form.

Keywords

Earth system Geodesy Geomathematics Mutual scientific interplay Mathematical geodesy as circuit 

Abstract

During the last decades, geodesy was influenced by two essential scenarios: First, the technological progress has completely changed the observational and measurement techniques. Modern high-speed computers and satellite-based techniques were more and more entering. Second, there was a growing public concern about the future of our planet, i.e., the change of its climate, the obligations of its environment, and about an expected shortage of its natural resources.

Simultaneously, all these aspects implied and imply the strong need of adequate mathematical structures, tools, and methods, i.e., geomathematics.

This contribution deals with today’s methodological components of the circuit mathematical geodesy characterizing the interrelations between geodesy and geomathematics with respect to origin and foundation, constituting ingredients, scientific role as well as perspective potential.

This introductory contribution represents a collection of known ideas and concepts from different sources in geodetic and geomathematical literature, however, in a new consistent setup and innovatively structured form.

References

  1. 1.
    Anderson, J.M., Mikhail, E.M.: Surveying: Theory and Practice. McGraw Hill, Boston (1998)Google Scholar
  2. 2.
    Blick, C.: Multiscale Potential Methods in Geothermal Research: Decorrelation Reflected Post-Processing and Locally Based Inversion. PhD-Thesis, University of Kaiserslautern, Geomathematics Group, Verlag Dr. Hut, Munich, 2015Google Scholar
  3. 3.
    Blick, C., Freeden, W.: Spherical spline application to radio occultation data. J. Geodetic Sci. 1, 379–396 (2011)CrossRefGoogle Scholar
  4. 4.
    Blick, C., Freeden, W., Nutz, H.: Feature extraction of geological signatures by multiscale gravimetry. GEM Int. J. Geomath. 8, 57–83 (2017)CrossRefGoogle Scholar
  5. 5.
    Blick, C., Freeden, W., Nutz, H.: Gravimetry and exploration. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics. Birkhäuser/Springer International Publishing, Basel/New-York/Heidelberg (2018)Google Scholar
  6. 6.
    Bruns, H.: Die Figur der Erde “Ein Beitrag zur europäischen Gradmessung”. P. Stankiewicz, Berlin (1878)Google Scholar
  7. 7.
    Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Stuttgart/Leipzig (1999)Google Scholar
  8. 8.
    Freeden, W.: Geomathematik, was ist das überhaupt? Jahresb. Deutsch. Mathem. Vereinigung (DMV) 111, 125–152 (2009)Google Scholar
  9. 9.
    Freeden, W.: Geomathematics: its role, its aim, and its potential. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 3–78. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Freeden, W.: In: Freeden, W., Nashed, M.Z. (eds.) Introduction of Handbook of Mathematical Geodesy, iX–XIV. Birkhäuser/Springer International Publishing, Basel/New-York/Heidelberg (2018)Google Scholar
  11. 11.
    Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World Mining 65, 1–15 (2013)Google Scholar
  12. 12.
    Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman and Hall/CRC Press, Boca Raton/London/New York (2013)Google Scholar
  13. 13.
    Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publications, Clarendon/Oxford (1998)Google Scholar
  14. 14.
    Freeden, W., Kersten, H.: The geodetic boundary-value problem using the known surface of the Earth, vol. 29. Veröff Geod Inst RWTH, Aachen (1980)Google Scholar
  15. 15.
    Freeden, W., Kersten, H.: A constructive approximation theorem for the oblique derivative problem in potential theory. Math. Methods Appl. Sci. 4, 104–114 (1981)CrossRefGoogle Scholar
  16. 16.
    Freeden, W., Mayer, C.: Multiscale solution for the molodensky problem on regular telluroidal surfaces. Acta Geod. Geophys. Hung. 41, 55–86 (2006)CrossRefGoogle Scholar
  17. 17.
    Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston (2004)CrossRefGoogle Scholar
  18. 18.
    Freeden, W., Michel, V., Simons, F.J.: Spherical harmonics based special function systems and constructive approximation methods. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 753–820. Springer International Publishing, Basel/New-York/Heidelberg (2018)CrossRefGoogle Scholar
  19. 19.
    Freeden, W., Nashed, M.Z.: Operator-theoretic and regularization approaches to ill-posed problems. GEM Int. J. Geomath. https://doi.org/10.1007/s13137-017-0100-0,2017
  20. 20.
    Freeden, W., Nashed, M.Z.: Ill-posed problems: operator methodologies of resolution and regularization. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 201–314. Springer International Publishing, Basel/New-York/Heidelberg (2018)CrossRefGoogle Scholar
  21. 21.
    Freeden, W., Nashed, M.Z.: Gravimetry as an ill-posed problem in mathematical geodesy. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 641–686. Springer International Publishing, Basel/New-York/Heidelberg (2018)CrossRefGoogle Scholar
  22. 22.
    Freeden, W., Nashed, M.Z., Schreiner, M.: Spherical Sampling. Geosystems Mathematics. Springer International Publishing, Basel/New-York/Heidelberg (2018)CrossRefGoogle Scholar
  23. 23.
    Freeden, W., Nutz, H.: Geodetic observables and their mathematical treatment in multiscale framework. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 315–458. Springer International Publishing, Basel/New-York/Heidelberg (2018)CrossRefGoogle Scholar
  24. 24.
    Freeden, W., Nutz, H., Schreiner, M.: Geomathematical advances in satellite gravity gradiometry (SGG). In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 501–604. Springer International Publishing, Basel/New-York/Heidelberg (2018)CrossRefGoogle Scholar
  25. 25.
    Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences – A Scalar, Vectorial, and Tensorial Setup. Springer, Heidelberg (2009)Google Scholar
  26. 26.
    Groten, E.: Geodesy and the Earth’s Gravity Field I + II. Dümmler, Bonn (1979)Google Scholar
  27. 27.
    Göttl, F., Rummel, R.: A geodetic view on isostatic models. Pure Appl. Geophys. 166, 1247–1260 (2009)CrossRefGoogle Scholar
  28. 28.
    Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, 49–52 (1902)Google Scholar
  29. 29.
    Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)Google Scholar
  30. 30.
    Heiskanen, W.A., Moritz, H.: Physical Geodesy. Reprint, Institut of Physical Geodesy, Technical University Graz (1981)Google Scholar
  31. 31.
    Helmert, F.R.: Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie, vol. 1. Teubner, Leipzig (1880)Google Scholar
  32. 32.
    Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Wien/New York (2005)Google Scholar
  33. 33.
    Hörmander, L.: Pseudodifferential Operators. Commun. Pure Appl. Math. 18, 501–517 (1965)CrossRefGoogle Scholar
  34. 34.
    Hörmander, L.: The Boundary Problems of Physical Geodesy. The Royal Institute of Technology, Division of Geodesy, Report 9, Stockholm (1975)Google Scholar
  35. 35.
    Klein, F.: Elementarmathematik III. Die Grundlagen der Mathematischen Wissenschaften, Band 16. Springer, Berlin (1928)CrossRefGoogle Scholar
  36. 36.
    Koch, K.R., Pope, A.J.: Uniqueness and existence for the geodetic boundary value problem using the known surface of the Earth. Bulletin Géodeséque 106, 467–476 (1972)CrossRefGoogle Scholar
  37. 37.
    Lambeck, K.: The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press, Cambridge (2005)Google Scholar
  38. 38.
    Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Shinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R.: The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA/TP-1998-206861, NASA Goddard Space Flight Center, Greenbelt (1998)Google Scholar
  39. 39.
    Listing, J.B.: Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Dietrichsche Verlagsbuchhandlung, Göttingen (1873)Google Scholar
  40. 40.
    Marussi, A.: Intrinsic Geodesy. Springer. Berlin/Heidelberg (1985)CrossRefGoogle Scholar
  41. 41.
    Misner, C.W., Thorne, J.A., Wheeler, J.A.: Gravitation. Freeman and Company, San Francisco (1973)Google Scholar
  42. 42.
    Molodensky, M.S., Eremeev, V.F., Yurkina, M.I.: Methods for Study of the External Gravitational Field and Figure of the Earth. Trudy TSNIIGAiK, Geodezizdat, Moscow, 131, 1960. English translat.: Israel Program for Scientific Translation, Jerusalem (1962)Google Scholar
  43. 43.
    Moritz, H.: Geodesy and Mathematics. Zeszyty Naukowe Akademii Görniczo-Hutniezej I.M. Stanislawa Staszica, No. 780, Geodezja, 63, pp. 38–43, Krakow (1981)Google Scholar
  44. 44.
    Moritz, H.: Classical Physical Geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 253–290. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  45. 45.
    Moritz, H., Mueller, I.I.: Earth Rotation. Ugar, New York (1987)Google Scholar
  46. 46.
    Müller, C.: Aspects of differential equations in mathematical physics. In: Langer, R.E. (ed.) Partial Differential Equations and Continuum Mechanics, pp. 3–8. The University of Wisconsin Press, Madison (1961)Google Scholar
  47. 47.
    Neumann, F.: Vorlesungen über die Theorie des Potentials und der Kugelfunktionen, pp. 135–154. Teubner, Leipzig (1887)Google Scholar
  48. 48.
    Oberg, J.: Space myths and misconceptions. Omni 15(7), 38–40 (1993)Google Scholar
  49. 49.
    Pavlis, N.K., Holmes, S.A., Kenyon, S.C., John K., Factor, J.K.: The development and evaluation of the Earth gravitational model 2008 (EGM2008). J. Geophys. Res.: Solid Earth (1978–2012) 117(B4) (2012). https://doi.org/40.1029/2011JB008916 Google Scholar
  50. 50.
    Pizzetti, P.: Corpi equivalenti rispetto alla attrazione newtoniana esterna. Rom. Acc. L. Rend. 18, 211–215 (1909)Google Scholar
  51. 51.
    Pizzetti, P.: Sopra il Calcoba Tesrico delle Deviazioni del Geoide dall’ Ellissoide. Att. R Accad. Sci. Torino, 46, 331–350 (1910)Google Scholar
  52. 52.
    Rummel, R.: Geodesy’s Contribution to Geophysics. ISR Interdiscipl. Sci. Rev. 9(2), 113–122 (1984)CrossRefGoogle Scholar
  53. 53.
    Rummel, R.: Geodesy. In: Nierenberg, W.A. (ed.) Encyclopedia of Earth System Science, vol. 2, pp. 253–262. Academic Press, New York (1992)Google Scholar
  54. 54.
    Rummel, R.: Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Rummel, R., Sanso, F. (eds.) Lecture Notes in Earth Science, vol. 65, pp. 359–404. Springer, Berlin (1997)Google Scholar
  55. 55.
    Rummel, R.: Dynamik aus der Schwere—Globales Gravitationsfeld. In: An den Fronten der Forschung. Kosmos – Erde – Leben, Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte (122. Versammlung, Halle), 69–77 (2002)Google Scholar
  56. 56.
    Rummel, R.: Geodäsie in Zeiten des Wandels – Versuch einer Standortbestimmung. Zeitschrift für Geodäsie, Geoinformation und Landmanagement (ZfV) 139, 211–216 (2014)Google Scholar
  57. 57.
    Rummel, R., Sünkel, H., Tscherning, C.C.: Comparison of global topographic/isostatic models to the Earth’s observed gravity field.. Department of Geodetic Science and Surveying, Ohio State University, Report No. 388 (1988)Google Scholar
  58. 58.
    Runge, C.: Zur Theorie der eindeutigen analytischen Funktionen. Acta Math. 6, 229–234 (1885)CrossRefGoogle Scholar
  59. 59.
    Sonar, T.: 3000 Jahre Analysis. Springer, Berlin/Heidelberg/New York (2011)CrossRefGoogle Scholar
  60. 60.
    Stokes, G.G.: On the variation of gravity at the surface of the Earth. Trans. Cambr. Phil. Soc. 148, 672–712 (1849)Google Scholar
  61. 61.
    Torge, W., Müller, J.: Geodesy. De Gruyter (2012)Google Scholar
  62. 62.
    Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc. 35, 499–544 (1929)CrossRefGoogle Scholar
  63. 63.

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Geomathematics Group, Mathematics DepartmentUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Institute for Computational EngineeringUniversity of Applied Sciences of Technology NTBBuchsSwitzerland

Section editors and affiliations

  • Willi Freeden
    • 1
  1. 1.Geomathematics GroupUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations