Geodetic Methods for Monitoring Crustal Motion and Deformation

  • Athanasios DermanisEmail author
Living reference work entry
Part of the Springer Reference Naturwissenschaften book series (SRN)


Die Verwendung geodätischer Daten für Studien der Krustendeformation führt zu zwei möglichen Fällen: (a) dem Vergleich der Ausprägung zweier Epochen, für die Stationskoordinaten verfügbar sind, um in jeder gewünschten Genauigkeit invariante planare Deformationsparameter zu berechnen, (b) der Nutzanwendung von Koordinaten und Geschwindigkeiten, um während einer bestimmten Epoche Zeitableitungen der Deformationsparameter zu bestimmen. Der vorliegende Beitrag widmet sich der klassischen approximativen ,,infinitesimalen“ Theorie ebenso wie der weit verbreiteten Finite-Element-Methode mittels triangulärer Elemente zur Interpolation von Stationsverschiebungen und Geschwindigkeiten. Eine strenge Theorie der Erweiterung planarer Deformation auf den dreidimensionalen Fall wird aufgewiesen.


Crustal motion Crustal deformation Principal strains Strain Strain rate Dilatation Shear Strain invariance Surface deformation Horizontal deformation 


The use of geodetic data for crustal deformation studies is studied for the two possible cases: (a) The comparison of shape at two epochs for which station coordinates are available in order to compute, at any desired point, invariant planar deformation parameters (strain parameters), such as principal strains, principal elongations, dilatation and shear. (b) The utilization of coordinates and velocities at a particular epoch for the computation of the time derivatives of the deformation parameters (strain rate parameters). The classical approximate “infinitesimal” theory is presented as well as the widely used finite element method with triangular elements for the interpolation of station displacements and velocities. In addition, a new completely rigorous planar deformation theory, based on the singular value decomposition of the deformation gradient matrix, is presented for both strain and strain rate parameter computation. The invariance characteristics of all the above deformation parameters, under changes of the involved reference systems, are studied, from a purely geodetic point of view different from that in classical mechanics. Emphasis is given to the separation of rigid motion of independent tectonic regions from their internal deformation, utilizing the concept of a discrete Tisserand reference system that best fits the geodetic subnetwork covering the relevant region. Interpolation of displacements or velocities using stochastic minimum mean square error prediction (known as collocation or kriging) is also examined with emphasis on how it can become statistically relevant and rigorous based on sample covariance and cross-covariance functions. It is also shown how the planar deformation can be adapted to the study of surface deformation, with applications to the study of shell-like constructions in geodetic engineering and the deformation of the physical surface of the earth. The most important application presented, is the study of horizontal deformation on the surface of the reference ellipsoid, utilizing either differences of geodetic coordinates between two epochs, or the horizontal components of station velocities. Finally, it is also shown how the rigorous theory of planar deformation can be extended to the three-dimensional case.



This presentation uses largely material from an unpublished invited presentation [5]. Most of its conclusions here are based on practical experience gained with software developed by Professor Ludovico Biagi of the Politecnico di Milano, which cover all methods of deformation analysis. I am thankful to Professor Biagi for his contribution to this research and his overall support.


  1. 1.
    Altiner, Y.: Geometrische Modellierung innerer und auterer Deformationen der Erdoberflache mit Anwendungen an der nordanatolischen Verwerfung und in der West-Tuerkei, Reihe C, no. 462, DGK, Frankfurt am Main (1996)Google Scholar
  2. 2.
    Barzaghi, R., Borghi, A., Sona, G.: New covariance models for local applications of collocation. In: Benciolini, B. (ed.) IV Hotine-Marussi Symposium on Mathematical Geodesy, Trento 14–17 Sept 1998. IAG Symposia, vol. 122. Springer, Berlin/Heidelberg (1998)Google Scholar
  3. 3.
    Bencini, P., Dermanis, A., Livieratos, E., Rossikopoulos, D.: Crustal deformation at the Friuli area from discrete and continuous geodetic prediction techniques. Bollettino di Geodesia e Scienze Affini, XLI(2), 137–148 (1982)Google Scholar
  4. 4.
    Benedetti, E., Dermanis, A., Crespi, M.: On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers. Adv. Space Res. 59, 2764–2778 (2017)CrossRefGoogle Scholar
  5. 5.
    Biagi, L., Dermanis, A.: Crustal Deformation Analysis from Permanent GPS Networks. Invited presentation at the EGU General Assembly, Vienna, 20–24 Apr 2009Google Scholar
  6. 6.
    Branzanti, M., Benedetti, E., Colosimo, G., Mazzoni, A., Crespi, M.: Real-time monitoring of fast displacements with VADASE: new applications and challenges with Galileo. In: ENC – GNSS 2014 Proceedings (2014)Google Scholar
  7. 7.
    Colosimo, G.: VADASE: a Brand New Approach to Real-Time GNSS Seismology. Lap Lambert Academic Publishing GmbH & Co KG, Saarbrücken, Germany (2013)Google Scholar
  8. 8.
    Danuser, G., Geiger, A., Muller, M.V.: Modellierung von Verschiebungs- und Verzerrungsfeldern. Bericht Nr. 218, Institut fur Geodasie und Photogrammetrie, ETH-Zurich (1993)Google Scholar
  9. 9.
    Dermanis, A.: Kriging and collocation – a comparison. Manuscr. Geodaet. 9(3), 159–167 (1984)Google Scholar
  10. 10.
    Dermanis, A.: Coordinates and Reference Systems (in Greek). Ziti Publications, Thessaloniki (2005)Google Scholar
  11. 11.
    Dermanis, A.: The evolution of geodetic methods for the determination of strain parameters for Earth crust deformation. In: Arabelos, D., Contadakis, M., Kaltsikis, Ch., Spatalas, S. (eds.) Terrestrial and Stellar Environment, Volume in honor of Prof. G. Asteriadis, pp. 107–144. Publication of the School of Rural & Surveying Engineering, Aristotle University of Thessaloniki (2009)Google Scholar
  12. 12.
    Dermanis, A.: Kriging in the light of the theory of random field prediction. In: Yannopoulos, S. (ed.) HydroGaea. Volume in honor of Prof. Ch. Jimopoulos, pp. 447–456. Publication of the School of Rural & Surveying Engineering, Aristotle University of Thessaloniki (2009)Google Scholar
  13. 13.
    Dermanis, A.: Fundamentals of surface deformation and application to construction monitoring. J. Appl. Geomat. 3(1), 9–22 (2011)CrossRefGoogle Scholar
  14. 14.
    Dermanis, A., Rummel, R.: Data analysis methods in geodesy. In: Dermanis, A., Gruen, A., Sanso, F. (eds.) Geomatic Methods for the Analysis of Data in Earth Sciences. Lecture Notes in Earth Sciences, vol. 95, pp. 17–92. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Dermanis, A., Livieratos, E., Rossikopoulos, D., Vlachos, D.: Geodetic prediction of crustal deformations at the seismic area of Volvi. In: Proceedings International Symposium “Geodetic Networks and Computations”, Munich, 1981. Veroeffentlichungen Deutsche Geodaetische Kommission, Reihe B, Nr. 258/V, pp. 234–248 (1982)Google Scholar
  16. 16.
    El-Fiky, G.S.: Temporal change of the crustal deformation and interplate coupling in the Tohoku district, Northeast Japan – a new approach. Ph.D., Thesis, Faculty of Science, Tokyo University (1998)Google Scholar
  17. 17.
    El-Fiky, G.S., Kato, T., Fujii, Y.: Distribution of the vertical crustal movement rates in the Tohoku district, Japan, predicted by least-squares collocation. J. Geodesy 71, 432–442 (1997)CrossRefGoogle Scholar
  18. 18.
    Grafarend, E.W., Voosoghi, B.: Intrinsic deformation analysis of the Earth’s surface based on displacement fields derived from space geodetic measurements. Case studies: present-day deformation patterns of Europe and of the Mediterranean area (ITRF data sets). J. Geodesy 77, 303–326 (2003)CrossRefGoogle Scholar
  19. 19.
    Hjelle Ø., Dæhlen M.: Triangulations and Applications. Springer, Berlin (2010)Google Scholar
  20. 20.
    Irgens F.: Continuum Mechanics. Springer, Berlin (2008)Google Scholar
  21. 21.
    Kahle, H.-G., Müller, M.V., Geiger, A., Danuser, G., Mueller, S., Veis, G., Billiris, H., Paradissis, D.: The strain field in Northwestern Greece and the Ionian Islands: results inferred from GPS measurements. Tectonophysics 249, 41–52 (1995)CrossRefGoogle Scholar
  22. 22.
    Kato, T., El-Fiky, G.S., Oware, E.N.: Crustal strains in the Japanese islands as deduced from GPS dense array. Geophys. Res. Lett. 25, 3445–3448 (1998)CrossRefGoogle Scholar
  23. 23.
    Marsden, J.E, Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1983)Google Scholar
  24. 24.
    Mase, G.E.: Continuum Mechanics. McGraw-Hill, New York (1970)Google Scholar
  25. 25.
    Moghtased-Azar, K., Grafarend, E.W.: Surface deformation analysis of dense GPS networks based on intrinsic geometry: deterministic and stochastic aspects. J. Geod. 83, 431–454 (2009)CrossRefGoogle Scholar
  26. 26.
    Moghtases-Azar, K.: Surface deformation analysis of dense GPS networks based on intrisic geometry. Deterministic and Stochastic Aspects, Deutsche Geod. Komm., Reihe C, Heft Nr. 612 (2007)Google Scholar
  27. 27.
    Muto, K.: A study of displacements of triangulation points. Bull. Earthquake Res. Inst. Univ. Tokyo 10, 384–391 (1932)Google Scholar
  28. 28.
    Reguzzoni, M., Sansó, F., Venuti, G.: The theory of general kriging, with applications to the determination of a local geoid. Geophys. J. Int. 162, 303–314 (2005)CrossRefGoogle Scholar
  29. 29.
    Rikitake, T.: Earthquake Prediction. Elsevier, Amsterdam (1976)Google Scholar
  30. 30.
    Stoker, J.J.: Differential Geometry. Wiley-Interscience, New York (1969)Google Scholar
  31. 31.
    Strang, G.: Introduction to Linear Algebra, 4th edn. Wellesley-Cambridge Press, Wellesley (2009)Google Scholar
  32. 32.
    Straub, C.: Recent crustal deformation and strain accumulation in the Marmara Sea region, N.W. Anatolia, inferred from GPS measurements, Ph.D., Thesis, ETH Zurich, Inst. of Geod. and Photogramm. Mitt. 58 (1996)Google Scholar
  33. 33.
    Terada, T., Miyame, N.: Deformation of the Earth crust in Kwansai districts and its relation to the orographic feature. Bull. Earthquake Res. Inst. Univ. Tokyo 7, 22–239 (1929)Google Scholar
  34. 34.
    Tscherning, C.C., Rapp, R.H.: Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree-variance models, Reports of the Department of Geodetic Science, No 28, The Ohio State University, Columbus (1974)Google Scholar
  35. 35.
    Tsuboi, C.: Investigation on the deformation of the Earth’s crust in the Tango district connected with the Tango earthquake of 1927. Bull. Earthquake Res. Inst. Univ. Tokyo 10, 411–434 (1932)Google Scholar
  36. 36.
    Tsuboi, C.: Investigation on the deformation of the Earth’s crust found by precise geodetic means. Jap. J. Astron. Geoph. 10, 93–248 (1933)Google Scholar
  37. 37.
    Voosoghi, B.: Intrinsic deformation analysis of the Earth surface based on 3-dimensional displacement fields derived from space geodetic measurements. Report Nr. 2003, Institut für Photogrammetrie, Universität Stuttgart (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geodesy and Surveying (DGS)Aristotle University of ThessalonikiThessalonikiGreece

Section editors and affiliations

  • Willi Freeden
    • 1
  1. 1.Geomathematics GroupUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations