Advertisement

Biologische Grundlagen der Aufmerksamkeitsdefizits-/Hyperaktivitätsstörung (ADHS) des Erwachsenenalters

  • Sarah Kittel-SchneiderEmail author
Living reference work entry

Zusammenfassung

Die Aufmerksamkeitsdefizits-/Hyperaktivitätsstörung des Erwachsenenalters ist eine weltweit häufige, psychiatrische Erkrankung mit Beginn in der Kindheit. Die Heritabilität wird geschätzt aus Zwillingsstudien mit bis zu 80 % angegeben. Von den bisher in Familien- und Kopplungsstudien sowie hypothesenfreien genomweiten Assoziationsstudien (genome-wide association studies, GWAS) gefundenen Risikogenvarianten konnten nur wenige Gene repliziert werden. Die Ursachen liegen vermutlich darin, dass es sich um eine komplex-genetische Erkrankung handelt und zum Erkrankungsrisiko nicht nur genetische Faktoren miteinander interagieren, sondern auch epigenetische Faktoren und Umweltfaktoren beitragen. Zudem verändert sich der Einfluss verschiedener Faktoren während der Lebensspanne, man spricht also von einer Gen-Umwelt-Entwicklungsinteraktion in der Äthiopathogenese der adulten ADHS.

Schlüsselwörter

ADHS Genetik Epigenetik Gen-Umwelt-Entwicklungsinteraktion Krankheitsmodelle 

Literatur

  1. Aarsland, T. I., Landaas, E. T., Hegvik, T. A., Ulvik, A., Halmoy, A., Ueland, P. M., & Haavik, J. (2015). Serum concentrations of kynurenines in adult patients with attention-deficit hyperactivity disorder (ADHD): A case-control study. Behavioral and Brain Functions, 11(1), 36.PubMedCrossRefGoogle Scholar
  2. Acosta, M. T., Velez, J. I., Bustamante, M. L., Balog, J. Z., Arcos-Burgos, M., & Muenke, M. (2011). A two-locus genetic interaction between LPHN3 and 11q predicts ADHD severity and long-term outcome. Translational Psychiatry, 1, e17.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andrade, C. (2016). Use of acetaminophen (paracetamol) during pregnancy and the risk of attention-deficit/hyperactivity disorder in the offspring. The Journal of Clinical Psychiatry, 77(3), e312–e314.PubMedCrossRefGoogle Scholar
  4. Aparecida da Silva, M., Cordeiro, Q., Louza, M., & Vallada, H. (2011). Lack of association between a 3′UTR VNTR polymorphism of dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Journal of Attention Disorders, 15(4), 305–309.PubMedCrossRefGoogle Scholar
  5. Arcos-Burgos, M., & Muenke, M. (2010). Toward a better understanding of ADHD: LPHN3 gene variants and the susceptibility to develop ADHD. Attention Deficit and Hyperactivity Disorders, 2(3), 139–147.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arcos-Burgos, M., et al. (2004). Pedigree disequilibrium test (PDT) replicates association and linkage between DRD4 and ADHD in multigenerational and extended pedigrees from a genetic isolate. Molecular Psychiatry, 9(3), 252–259.PubMedCrossRefGoogle Scholar
  7. Arcos-Burgos, M., et al. (2010). A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Molecular Psychiatry, 15(11), 1053–1066.PubMedCrossRefGoogle Scholar
  8. Arias-Vasquez, A., et al. (2011). CDH13 is associated with working memory performance in attention deficit/hyperactivity disorder. Genes, Brain, and Behavior, 10(8), 844–851.PubMedCrossRefGoogle Scholar
  9. Bale, T. L. (2014). Lifetime stress experience: Transgenerational epigenetics and germ cell programming. Dialogues in Clinical Neuroscience, 16(3), 297–305.PubMedPubMedCentralGoogle Scholar
  10. Banaschewski, T., Becker, K., Dopfner, M., Holtmann, M., Rosler, M., & Romanos, M. (2017). Attention-deficit/hyperactivity disorder. Deutsches Ärzteblatt International, 114(9), 149–159.PubMedPubMedCentralGoogle Scholar
  11. Banerjee, T. D., Middleton, F., & Faraone, S. V. (2007). Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatrica, 96(9), 1269–1274.PubMedCrossRefGoogle Scholar
  12. Barkley, R. A., Smith, K. M., Fischer, M., & Navia, B. (2006). An examination of the behavioral and neuropsychological correlates of three ADHD candidate gene polymorphisms (DRD4 7+, DBH TaqI A2, and DAT1 40 bp VNTR) in hyperactive and normal children followed to adulthood. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 141B(5), 487–498.CrossRefGoogle Scholar
  13. Bateman, B., Warner, J. O., Hutchinson, E., Dean, T., Rowlandson, P., Gant, C., Grundy, J., Fitzgerald, C., & Stevenson, J. (2004). The effects of a double blind, placebo controlled, artificial food colourings and benzoate preservative challenge on hyperactivity in a general population sample of preschool children. Archives of Disease in Childhood, 89(6), 506–511.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Begum, F., Ghosh, D., Tseng, G. C., & Feingold, E. (2012). Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Research, 40(9), 3777–3784.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Beilharz, J. E., Kaakoush, N. O., Maniam, J., & Morris, M. J. (2017). Cafeteria diet and probiotic therapy: Cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Molecular Psychiatry, 23(2), 351–361.  https://doi.org/10.1038/mp.2017.38.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bellisle, F. (2004). Effects of diet on behaviour and cognition in children. The British Journal of Nutrition, 92(Suppl 2), S227–S232.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bernardi, S., Cortese, S., Solanto, M., Hollander, E., & Pallanti, S. (2010). Bipolar disorder and comorbid attention deficit hyperactivity disorder. A distinct clinical phenotype? Clinical characteristics and temperamental traits. The World Journal of Biological Psychiatry, 11(4), 656–666.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Biederman, J., et al. (1992). Further evidence for family-genetic risk factors in attention deficit hyperactivity disorder. Patterns of comorbidity in probands and relatives psychiatrically and pediatrically referred samples. Archives of General Psychiatry, 49(9), 728–738.PubMedCrossRefGoogle Scholar
  19. Biederman, J., et al. (2009). Effect of candidate gene polymorphisms on the course of attention deficit hyperactivity disorder. Psychiatry Research, 170(2–3), 199–203.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Biederman, J., Petty, C., Spencer, T. J., Woodworth, K. Y., Bhide, P., Zhu, J., & Faraone, S. V. (2014). Is ADHD a risk for posttraumatic stress disorder (PTSD)? Results from a large longitudinal study of referred children with and without ADHD. The World Journal of Biological Psychiatry, 15(1), 49–55.PubMedCrossRefGoogle Scholar
  21. Bilici, M., Yildirim, F., Kandil, S., Bekaroglu, M., Yildirmis, S., Deger, O., Ulgen, M., Yildiran, A., & Aksu, H. (2004). Double-blind, placebo-controlled study of zinc sulfate in the treatment of attention deficit hyperactivity disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 28(1), 181–190.CrossRefGoogle Scholar
  22. Brookes, K. J., Hawi, Z., Park, J., Scott, S., Gill, M., & Kent, L. (2010). Polymorphisms of the steroid sulfatase (STS) gene are associated with attention deficit hyperactivity disorder and influence brain tissue mRNA expression. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(8), 1417–1424.CrossRefGoogle Scholar
  23. Brookes, K. J., Neale, B. M., Sugden, K., Khan, N., Asherson, P., & D’Souza, U. M. (2007). Relationship between VNTR polymorphisms of the human dopamine transporter gene and expression in post-mortem midbrain tissue. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B(8), 1070–1078.CrossRefGoogle Scholar
  24. Brown, A. B., et al. (2011). Relationship of DAT1 and adult ADHD to task-positive and task-negative working memory networks. Psychiatry Research, 193(1), 7–16.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bruchmuller, K., Margraf, J., & Schneider, S. (2012). Is ADHD diagnosed in accord with diagnostic criteria? Overdiagnosis and influence of client gender on diagnosis. Journal of Consulting and Clinical Psychology, 80(1), 128–138.PubMedCrossRefGoogle Scholar
  26. Bruggemann, D., et al. (2007). No association between a common haplotype of the 6 and 10-repeat alleles in intron 8 and the 3′UTR of the DAT1 gene and adult attention deficit hyperactivity disorder. Psychiatric Genetics, 17(2), 121.PubMedCrossRefGoogle Scholar
  27. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.PubMedCrossRefGoogle Scholar
  28. Cao, M., Shu, N., Cao, Q., Wang, Y., & He, Y. (2014). Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Molecular Neurobiology, 50(3), 1111–1123.PubMedCrossRefGoogle Scholar
  29. Carpentier, P. J., et al. (2013). Shared and unique genetic contributions to attention deficit/hyperactivity disorder and substance use disorders: A pilot study of six candidate genes. European Neuropsychopharmacology, 23(6), 448–457.PubMedCrossRefGoogle Scholar
  30. Casas, M., et al. (2015). Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA-Sabadell cohort. Environmental Research, 142, 671–679.PubMedCrossRefGoogle Scholar
  31. Cederlof, M., et al. (2014). Klinefelter syndrome and risk of psychosis, autism and ADHD. Journal of Psychiatric Research, 48(1), 128–130.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ceylan, M., Sener, S., Bayraktar, A. C., & Kavutcu, M. (2010). Oxidative imbalance in child and adolescent patients with attention-deficit/hyperactivity disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34(8), 1491–1494.CrossRefGoogle Scholar
  33. Ceylan, M. F., Sener, S., Bayraktar, A. C., & Kavutcu, M. (2012). Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder. Psychiatry and Clinical Neurosciences, 66(3), 220–226.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chen, Y. C., et al. (2017). Neuroanatomic, epigenetic and genetic differences in monozygotic twins discordant for attention deficit hyperactivity disorder. Molecular Psychiatry, 23(3), 683–690.  https://doi.org/10.1038/mp.2017.45.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Choudhry, Z., Sengupta, S. M., Grizenko, N., Fortier, M. E., Thakur, G. A., Bellingham, J., & Joober, R. (2012). LPHN3 and attention-deficit/hyperactivity disorder: Interaction with maternal stress during pregnancy. Journal of Child Psychology and Psychiatry, 53(8), 892–902.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chudal, R., et al. (2015). Parental age and the risk of attention-deficit/hyperactivity disorder: A nationwide, population-based cohort study. Journal of the American Academy of Child and Adolescent Psychiatry, 54(6), 487–494.e481.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Class, Q. A., et al. (2014). Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress. Psychological Medicine, 44(1), 71–84.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Cnattingius, S. (2004). The epidemiology of smoking during pregnancy: Smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine & Tobacco Research, 6(Suppl 2), S125–S140.CrossRefGoogle Scholar
  39. Cortese, S., Lecendreux, M., Bernardina, B. D., Mouren, M. C., Sbarbati, A., & Konofal, E. (2008). Attention-deficit/hyperactivity disorder, Tourette’s syndrome, and restless legs syndrome: The iron hypothesis. Medical Hypotheses, 70(6), 1128–1132.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Cross-Disorder Group of the Psychiatric Genomics Consortium, et al. (2013a). Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet, 381(9875), 1371–1379.Google Scholar
  41. Cross-Disorder Group of the Psychiatric Genomics Consortium, et al. (2013b). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45(9), 984–994.Google Scholar
  42. Dadds, M. R., Schollar-Root, O., Lenroot, R., Moul, C., & Hawes, D. J. (2016). Epigenetic regulation of the DRD4 gene and dimensions of attention-deficit/hyperactivity disorder in children. European Child & Adolescent Psychiatry, 25(10), 1081–1089.CrossRefGoogle Scholar
  43. Davids, E., Zhang, K., Tarazi, F. I., & Baldessarini, R. J. (2002). Stereoselective effects of methylphenidate on motor hyperactivity in juvenile rats induced by neonatal 6-hydroxydopamine lesioning. Psychopharmacology, 160(1), 92–98.PubMedCrossRefGoogle Scholar
  44. Delamarre, A., & Meissner, W. G. (2017). Epidemiology, environmental risk factors and genetics of Parkinson’s disease. Presse Médicale, 46(2 Pt 1), 175–181.CrossRefGoogle Scholar
  45. Ding, K., et al. (2016). DAT1 methylation is associated with methylphenidate response on oppositional and hyperactive-impulsive symptoms in children and adolescents with ADHD. The World Journal of Biological Psychiatry, 18(4), 291–299.  https://doi.org/10.1080/15622975.2016.1224928.PubMedCrossRefGoogle Scholar
  46. Egger, G., Liang, G., Aparicio, A., & Jones, P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990), 457–463.PubMedCrossRefGoogle Scholar
  47. England, S. J., et al. (2011). L-Dopa improves restless legs syndrome and periodic limb movements in sleep but not attention-deficit-hyperactivity disorder in a double-blind trial in children. Sleep Medicine, 12(5), 471–477.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ewijk, H. van, Heslenfeld, D. J., Zwiers, M. P., Buitelaar, J. K., & Oosterlaan, J. (2012). Diffusion tensor imaging in attention deficit/hyperactivity disorder: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews 36(4), 1093–1106.Google Scholar
  49. Fair, D. A., et al. (2010). Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biological Psychiatry, 68(12), 1084–1091.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Faraone, S. V., et al. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 1, 15020.PubMedCrossRefGoogle Scholar
  51. Franke, B., Neale, B. M., & Faraone, S. V. (2009). Genome-wide association studies in ADHD. Human Genetics, 126(1), 13–50.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Franke, B., et al. (2008). Association of the dopamine transporter (SLC6A3/DAT1) gene 9–6 haplotype with adult ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1576–1579.CrossRefGoogle Scholar
  53. Franke, B., et al. (2010). Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology, 35(3), 656–664.PubMedCrossRefGoogle Scholar
  54. Franke, B., et al. (2012). The genetics of attention deficit/hyperactivity disorder in adults, a review. Molecular Psychiatry, 17(10), 960–987.PubMedCrossRefGoogle Scholar
  55. Freitag, C. M., Hanig, S., Palmason, H., Meyer, J., Wust, S., & Seitz, C. (2009). Cortisol awakening response in healthy children and children with ADHD: Impact of comorbid disorders and psychosocial risk factors. Psychoneuroendocrinology, 34(7), 1019–1028.PubMedCrossRefGoogle Scholar
  56. Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288(5789), 373–376.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Galler, J. R., Bryce, C. P., Zichlin, M. L., Fitzmaurice, G., Eaglesfield, G. D., & Waber, D. P. (2012). Infant malnutrition is associated with persisting attention deficits in middle adulthood. The Journal of Nutrition, 142(4), 788–794.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Garcia-Martinez, I., et al. (2016). Preliminary evidence for association of genetic variants in pri-miR-34b/c and abnormal miR-34c expression with attention deficit and hyperactivity disorder. Translational Psychiatry, 6(8), e879.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Geissler, J. M., International Parkinson Disease Genomics Consortium members, Romanos, M., Gerlach, M., Berg, D., & Schulte, C. (2017). No genetic association between attention-deficit/hyperactivity disorder (ADHD) and Parkinson’s disease in nine ADHD candidate SNPs. Attention Deficit and Hyperactivity Disorders, 9, 121.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gelernter, J. (2015). Genetics of complex traits in psychiatry. Biological Psychiatry, 77(1), 36–42.PubMedCrossRefGoogle Scholar
  61. Glessner, J. T., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459(7246), 569–573.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Glover, V. (2015). Prenatal stress and its effects on the fetus and the child: Possible underlying biological mechanisms. Advances in Neurobiology, 10, 269–283.PubMedCrossRefGoogle Scholar
  63. Green, T., et al. (2015). Elucidating X chromosome influences on attention deficit hyperactivity disorder and executive function. Journal of Psychiatric Research, 68, 217–225.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Grevet, E. H., et al. (2007). Serotonin transporter gene polymorphism and the phenotypic heterogeneity of adult ADHD. Journal of Neural Transmission (Vienna), 114(12), 1631–1636.CrossRefGoogle Scholar
  65. Gross-Lesch, S., et al. (2013). Sex- and subtype-related differences in the comorbidity of adult ADHDs. Journal of Attention Disorders, 20(10), 855–866.  https://doi.org/10.1177/1087054713510353.PubMedCrossRefGoogle Scholar
  66. Grunewald, L., et al. (2016). Functional impact of an ADHD-associated DIRAS2 promoter polymorphism. Neuropsychopharmacology, 41(13), 3025–3031.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gunn, R. K., Keenan, M. E., & Brown, R. E. (2011). Analysis of sensory, motor and cognitive functions of the coloboma (C3Sn.Cg-Cm/J) mutant mouse. Genes, Brain, and Behavior, 10(5), 579–588.PubMedCrossRefGoogle Scholar
  68. Hawi, Z., et al. (2013). DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS One, 8(4), e60274.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hawi, Z., Cummins, T. D., Tong, J., Johnson, B., Lau, R., Samarrai, W., & Bellgrove, M. A. (2015). The molecular genetic architecture of attention deficit hyperactivity disorder. Molecular Psychiatry, 20(3), 289–297.PubMedCrossRefGoogle Scholar
  70. He, L., & Hannon, G. J. (2004). MicroRNAs: Small RNAs with a big role in gene regulation. Nature Reviews. Genetics, 5(7), 522–531.PubMedCrossRefGoogle Scholar
  71. Hodgkins, P., Montejano, L., Sasane, R., & Huse, D. (2011). Cost of illness and comorbidities in adults diagnosed with attention-deficit/hyperactivity disorder: A retrospective analysis. The Primary Care Companion for CNS Disorders, 13(2).  https://doi.org/10.4088/PCC.10m01030.
  72. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84(24), 9265–9269.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748–751.PubMedCrossRefGoogle Scholar
  74. Jacob, C. P., et al. (2013). Acetylcholine-metabolizing butyrylcholinesterase (BCHE) copy number and single nucleotide polymorphisms and their role in attention-deficit/hyperactivity syndrome. Journal of Psychiatric Research, 47(12), 1902–1908.PubMedCrossRefGoogle Scholar
  75. Jacob, C. P., et al. (2014). Sex- and subtype-related differences of personality disorders (Axis II) and personality traits in persistent ADHD. Journal of Attention Disorders, 20(12), 1056–1065.PubMedCrossRefGoogle Scholar
  76. Jain, M., et al. (2012). A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD. Molecular Psychiatry, 17(7), 741–747.PubMedCrossRefGoogle Scholar
  77. Jarick, I., et al. (2014). Genome-wide analysis of rare copy number variations reveals PARK2 as a candidate gene for attention-deficit/hyperactivity disorder. Molecular Psychiatry, 19(1), 115–121.PubMedCrossRefGoogle Scholar
  78. Johann, M., Bobbe, G., Putzhammer, A., & Wodarz, N. (2003). Comorbidity of alcohol dependence with attention-deficit hyperactivity disorder: Differences in phenotype with increased severity of the substance disorder, but not in genotype (serotonin transporter and 5-hydroxytryptamine-2c receptor). Alcoholism, Clinical and Experimental Research, 27(10), 1527–1534.PubMedCrossRefGoogle Scholar
  79. Johansson, J., Landgren, M., Fernell, E., Lewander, T., & Venizelos, N. (2013). Decreased binding capacity (Bmax) of muscarinic acetylcholine receptors in fibroblasts from boys with attention-deficit/hyperactivity disorder (ADHD). Attention Deficit and Hyperactivity Disorders, 5(3), 267–271.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Johansson, J., et al. (2011). Altered tryptophan and alanine transport in fibroblasts from boys with attention-deficit/hyperactivity disorder (ADHD): An in-vitro study. Behavioral and Brain Functions, 7, 40.PubMedCrossRefGoogle Scholar
  81. Johansson, S., et al. (2008). Genetic analyses of dopamine related genes in adult ADHD patients suggest an association with the DRD5-microsatellite repeat, but not with DRD4 or SLC6A3 VNTRs. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1470–1475.CrossRefGoogle Scholar
  82. Johansson, S., et al. (2010). Common variants in the TPH1 and TPH2 regions are not associated with persistent ADHD in a combined sample of 1636 adult cases and 1923 controls from four European populations. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(5), 1008–1015.Google Scholar
  83. Johnson, C., et al. (2006). Pooled association genome scanning for alcohol dependence using 104,268 SNPs: Validation and use to identify alcoholism vulnerability loci in unrelated individuals from the collaborative study on the genetics of alcoholism. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 141B(8), 844–853.CrossRefGoogle Scholar
  84. Johnson, M., Ostlund, S., Fransson, G., Kadesjo, B., & Gillberg, C. (2009). Omega-3/omega-6 fatty acids for attention deficit hyperactivity disorder: A randomized placebo-controlled trial in children and adolescents. Journal of Attention Disorders, 12(5), 394–401.PubMedCrossRefGoogle Scholar
  85. Kandemir, H., et al. (2014). Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder. Neuroscience Letters, 580, 158–162.PubMedCrossRefGoogle Scholar
  86. Karam, R. G., et al. (2015). Persistence and remission of ADHD during adulthood: A 7-year clinical follow-up study. Psychological Medicine, 45(10), 2045–2056.PubMedCrossRefGoogle Scholar
  87. Kessler, R. C., et al. (2005). Patterns and predictors of attention-deficit/hyperactivity disorder persistence into adulthood: Results from the national comorbidity survey replication. Biological Psychiatry, 57(11), 1442–1451.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kittel-Schneider, S., et al. (2015). Multi-level biomarker analysis of nitric oxide synthase isoforms in bipolar disorder and adult ADHD. Journal of Psychopharmacology, 29(1), 31–38.PubMedCrossRefGoogle Scholar
  89. Kittel-Schneider, S., et al. (2016). Cytogenetic effects of chronic methylphenidate treatment and chronic social stress in adults with attention-deficit/hyperactivity disorder. Pharmacopsychiatry, 49(4), 146–154.  https://doi.org/10.1055/s-0035-1569361.PubMedCrossRefGoogle Scholar
  90. Kittles, R. A., Long, J. C., Bergen, A. W., Eggert, M., Virkkunen, M., Linnoila, M., & Goldman, D. (1999). Cladistic association analysis of Y chromosome effects on alcohol dependence and related personality traits. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 4204–4209.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Klein, M., et al. (2015). Converging evidence does not support GIT1 as an ADHD risk gene. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 168(6), 492–507.CrossRefGoogle Scholar
  92. Konofal, E., et al. (2008). Effects of iron supplementation on attention deficit hyperactivity disorder in children. Pediatric Neurology, 38(1), 20–26.PubMedCrossRefGoogle Scholar
  93. Krasnoperov, V. G., et al. (1997). alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron, 18(6), 925–937.PubMedCrossRefGoogle Scholar
  94. Labbe, A., Liu, A., Atherton, J., Gizenko, N., Fortier, M. E., Sengupta, S. M., & Ridha, J. (2012). Refining psychiatric phenotypes for response to treatment: Contribution of LPHN3 in ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 159B(7), 776–785.CrossRefGoogle Scholar
  95. Lackschewitz, H., Huther, G., & Kroner-Herwig, B. (2008). Physiological and psychological stress responses in adults with attention-deficit/hyperactivity disorder (ADHD). Psychoneuroendocrinology, 33(5), 612–624.PubMedCrossRefGoogle Scholar
  96. Landaas, E. T., et al. (2010). An international multicenter association study of the serotonin transporter gene in persistent ADHD. Genes, Brain, and Behavior, 9(5), 449–458.PubMedCrossRefGoogle Scholar
  97. Lange, M., et al. (2012a). The ADHD-linked gene Lphn3.1 controls locomotor activity and impulsivity in zebrafish. Molecular Psychiatry, 17(9), 855.PubMedCrossRefGoogle Scholar
  98. Lange, M., et al. (2012b). The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Molecular Psychiatry, 17(9), 946–954.PubMedCrossRefGoogle Scholar
  99. Langley, K., Holmans, P. A., van den Bree, M. B., & Thapar, A. (2007). Effects of low birth weight, maternal smoking in pregnancy and social class on the phenotypic manifestation of attention deficit hyperactivity disorder and associated antisocial behaviour: Investigation in a clinical sample. BMC Psychiatry, 7, 26.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lasky-Su, J., et al. (2008a). Genome-wide association scan of the time to onset of attention deficit hyperactivity disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1355–1358.CrossRefGoogle Scholar
  101. Lasky-Su, J., et al. (2008b). Family-based association analysis of a statistically derived quantitative traits for ADHD reveal an association in DRD4 with inattentive symptoms in ADHD individuals. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(1), 100–106.CrossRefGoogle Scholar
  102. Lasky-Su, J., et al. (2008c). Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1345–1354.CrossRefGoogle Scholar
  103. Lesch, K. P., Merker, S., Reif, A., & Novak, M. (2013). Dances with black widow spiders: Dysregulation of glutamate signalling enters centre stage in ADHD. European Neuropsychopharmacology, 23(6), 479–491.PubMedCrossRefGoogle Scholar
  104. Lesch, K. P., et al. (2008). Molecular genetics of adult ADHD: Converging evidence from genome-wide association and extended pedigree linkage studies. Journal of Neural Transmission, 115(11), 1573–1585.PubMedCrossRefGoogle Scholar
  105. Lesch, K. P., et al. (2011). Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: Association with neuropeptide Y gene dosage in an extended pedigree. Molecular Psychiatry, 16(5), 491–503.PubMedCrossRefGoogle Scholar
  106. Lewis, C. M., et al. (2003). Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. American Journal of Human Genetics, 73(1), 34–48.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lin, T. B., et al. (2015). Fbxo3-dependent Fbxl2 ubiquitination mediates neuropathic allodynia through the TRAF2/TNIK/GluR1 cascade. The Journal of Neuroscience, 35(50), 16545–16560.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Liu, Y. S., et al. (2017). The association of SNAP25 gene polymorphisms in attention deficit/hyperactivity disorder: A systematic review and meta-analysis. Molecular Neurobiology, 54(3), 2189–2200.PubMedCrossRefGoogle Scholar
  109. Lockridge, O. (1988). Structure of human serum cholinesterase. Bioessays, 9(4), 125–128.PubMedCrossRefGoogle Scholar
  110. Lu, A. T., et al. (2008). Association of the cannabinoid receptor gene (CNR1) with ADHD and post-traumatic stress disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1488–1494.CrossRefGoogle Scholar
  111. MacQueen, G., Surette, M., & Moayyedi, P. (2017). The gut microbiota and psychiatric illness. Journal of Psychiatry & Neuroscience, 42(2), 75–77.CrossRefGoogle Scholar
  112. Majdak, P., et al. (2016). A new mouse model of ADHD for medication development. Scientific Reports, 6, 39472.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Martin, J., O’Donovan, M. C., Thapar, A., Langley, K., & Williams, N. (2015). The relative contribution of common and rare genetic variants to ADHD. Translational Psychiatry, 5, e506.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Martinez, A. F., Muenke, M., & Arcos-Burgos, M. (2011). From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(1), 1–10.CrossRefGoogle Scholar
  115. Mautner, V. F., Kluwe, L., Thakker, S. D., & Leark, R. A. (2002). Treatment of ADHD in neurofibromatosis type 1. Developmental Medicine and Child Neurology, 44(3), 164–170.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Menon, P., et al. (2010). Impaired spine formation and learning in GPCR kinase 2 interacting protein-1 (GIT1) knockout mice. Brain Research, 1317, 218–226.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Mettler, F. A. (1964). The substantia nigra and parkinsonism. Transactions of the American Neurological Association, 89, 68–73.PubMedGoogle Scholar
  118. Middeldorp, C. M., et al. (2011). The genetic association between personality and major depression or bipolar disorder. A polygenic score analysis using genome-wide association data. Translational Psychiatry, 1, e50.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mil, N. H. van, et al. (2014). DNA methylation profiles at birth and child ADHD symptoms. Journal of Psychiatric Research 49, 51–59.PubMedCrossRefGoogle Scholar
  120. Moffitt, T. E., et al. (2015). Is adult ADHD a childhood-onset neurodevelopmental disorder? Evidence from a four-decade longitudinal cohort study. The American Journal of Psychiatry.  https://doi.org/10.1176/appi.ajp.2015.14101266.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Muglia, P., Jain, U., Inkster, B., & Kennedy, J. L. (2002). A quantitative trait locus analysis of the dopamine transporter gene in adults with ADHD. Neuropsychopharmacology, 27(4), 655–662.PubMedGoogle Scholar
  122. Muglia, P., Jain, U., Macciardi, F., & Kennedy, J. L. (2000). Adult attention deficit hyperactivity disorder and the dopamine D4 receptor gene. American Journal of Medical Genetics, 96(3), 273–277.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Muller, D. J., et al. (2008). Serotonin transporter gene and adverse life events in adult ADHD. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1461–1469.CrossRefGoogle Scholar
  124. Muller, D. J., et al. (2010). Correlation of a set of gene variants, life events and personality features on adult ADHD severity. Journal of Psychiatric Research, 44(9), 598–604.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Nakada, M., Yamada, A., Takino, T., Miyamori, H., Takahashi, T., Yamashita, J., & Sato, H. (2001). Suppression of membrane-type 1 matrix metalloproteinase (MMP)-mediated MMP-2 activation and tumor invasion by testican 3 and its splicing variant gene product, N-Tes. Cancer Research, 61(24), 8896–8902.PubMedPubMedCentralGoogle Scholar
  126. Neale, B. M., et al. (2008). Genome-wide association scan of attention deficit hyperactivity disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1337–1344.CrossRefGoogle Scholar
  127. Neale, B. M., et al. (2010a). Case-control genome-wide association study of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 49(9), 906–920.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Neale, B. M., et al. (2010b). Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 49(9), 884–897.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Nemeth, N., Kovacs-Nagy, R., Szekely, A., Sasvari-Szekely, M., & Ronai, Z. (2013). Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene. PLoS One, 8(12), e84207.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Niarchou, M., Martin, J., Thapar, A., Owen, M. J., & van den Bree, M. B. (2015). The clinical presentation of attention deficit-hyperactivity disorder (ADHD) in children with 22q11.2 deletion syndrome. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 168(8), 730–738.CrossRefGoogle Scholar
  131. Nigg, J. T., & Breslau, N. (2007). Prenatal smoking exposure, low birth weight, and disruptive behavior disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 46(3), 362–369.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Obel, C., et al. (2011). Is maternal smoking during pregnancy a risk factor for hyperkinetic disorder? – Findings from a sibling design. International Journal of Epidemiology, 40(2), 338–345.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Ohadi, M., et al. (2006). Attention-deficit/hyperactivity disorder (ADHD) association with the DAT1 core promoter -67 T allele. Brain Research, 1101(1), 1–4.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Orsini, C. A., et al. (2016). Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction. Molecular Genetics & Genomic Medicine, 4(3), 322–343.CrossRefGoogle Scholar
  135. Park, S., et al. (2015). Associations between serotonin transporter gene (SLC6A4) methylation and clinical characteristics and cortical thickness in children with ADHD. Psychological Medicine, 45(14), 3009–3017.  https://doi.org/10.1017/S003329171500094X.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Partty, A., Kalliomaki, M., Wacklin, P., Salminen, S., & Isolauri, E. (2015). A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: A randomized trial. Pediatric Research, 77(6), 823–828.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Pelsser, L. M., Frankena, K., Toorman, J., & Rodrigues Pereira, R. (2017). Diet and ADHD, reviewing the evidence: A systematic review of meta-analyses of double-blind placebo-controlled trials evaluating the efficacy of diet interventions on the behavior of children with ADHD. PLoS One, 12(1), e0169277.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Perez, F. A., & Palmiter, R. D. (2005). Parkin-deficient mice are not a robust model of parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 102(6), 2174–2179.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Perroud, N., et al. (2016). Methylation of serotonin receptor 3A in ADHD, borderline personality, and bipolar disorders: Link with severity of the disorders and childhood maltreatment. Depression and Anxiety, 33(1), 45–55.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Rajyaguru, P., & Cooper, M. (2013). Role of dietary supplementation in attention-deficit hyperactivity disorder. The British Journal of Psychiatry, 202, 398–399.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Ramos-Quiroga, J. A., et al. (2014). Genome-wide copy number variation analysis in adult attention-deficit and hyperactivity disorder. Journal of Psychiatric Research, 49, 60–67.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Ranaivoson, F. M., et al. (2015). Structural and mechanistic insights into the latrophilin3-FLRT3 complex that mediates glutamatergic synapse development. Structure, 23(9), 1665–1677.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Redies, C., Hertel, N., & Hubner, C. A. (2012). Cadherins and neuropsychiatric disorders. Brain Research, 1470, 130–144.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Reif, A., et al. (2009). Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans. Archives of General Psychiatry, 66(1), 41–50.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Reif, A., et al. (2011). DIRAS2 is associated with adult ADHD, related traits, and co-morbid disorders. Neuropsychopharmacology, 36(11), 2318–2327.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Retz, W., et al. (2008). Norepinephrine transporter and catecholamine-O-methyltransferase gene variants and attention-deficit/hyperactivity disorder symptoms in adults. Journal of Neural Transmission (Vienna), 115(2), 323–329.CrossRefGoogle Scholar
  147. Ribases, M., et al. (2011). Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: A replication study. Genes, Brain, and Behavior, 10(2), 149–157.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Rice, F., Harold, G. T., Boivin, J., van den Bree, M., Hay, D. F., & Thapar, A. (2010). The links between prenatal stress and offspring development and psychopathology: Disentangling environmental and inherited influences. Psychological Medicine, 40(2), 335–345.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Rivero, O., et al. (2015). Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Translational Psychiatry, 5, e655.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Rodriguez, A., & Bohlin, G. (2005). Are maternal smoking and stress during pregnancy related to ADHD symptoms in children? Journal of Child Psychology and Psychiatry, 46(3), 246–254.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Rodriguiz, R. M., Chu, R., Caron, M. G., & Wetsel, W. C. (2004). Aberrant responses in social interaction of dopamine transporter knockout mice. Behavioural Brain Research, 148(1–2), 185–198.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Rohde, P. D., Madsen, L. S., Neumann Arvidson, S. M., Loeschcke, V., Demontis, D., & Kristensen, T. N. (2016). Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior. Fly (Austin), 10(1), 25–34.CrossRefGoogle Scholar
  153. Rojas-Mayorquin, A. E., Padilla-Velarde, E., & Ortuno-Sahagun, D. (2016). Prenatal alcohol exposure in rodents as a promising model for the study of ADHD molecular basis. Frontiers in Neuroscience, 10, 565.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Ronald, A., Pennell, C. E., & Whitehouse, A. J. (2010). Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Frontiers in Psychology, 1, 223.PubMedGoogle Scholar
  155. Rubia, K. (2007). Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19663–19664.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Rubia, K., Alegria, A. A., & Brinson, H. (2014). Brain abnormalities in attention-deficit hyperactivity disorder: A review. Revista de Neurologia, 58(Suppl 1), S3–S16.PubMedGoogle Scholar
  157. Rucklidge, J. J., Frampton, C. M., Gorman, B., & Boggis, A. (2014). Vitamin-mineral treatment of attention-deficit hyperactivity disorder in adults: Double-blind randomised placebo-controlled trial. The British Journal of Psychiatry, 204, 306–315.PubMedCrossRefGoogle Scholar
  158. Russell, V., de Villiers, A., Sagvolden, T., Lamm, M., & Taljaard, J. (1995). Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder – The spontaneously hypertensive rat. Brain Research, 676(2), 343–351.PubMedCrossRefGoogle Scholar
  159. Russell, V. A. (2011). Overview of animal models of attention deficit hyperactivity disorder (ADHD). Current Protocols in Neuroscience, Chapter 9, Unit 9.35.CrossRefGoogle Scholar
  160. Salatino-Oliveira, A., et al. (2015). Cadherin-13 gene is associated with hyperactive/impulsive symptoms in attention/deficit hyperactivity disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 168B(3), 162–169.CrossRefGoogle Scholar
  161. Salatino-Oliveira, A., et al. (2016). NOS1 and SNAP25 polymorphisms are associated with attention-deficit/hyperactivity disorder symptoms in adults but not in children. Journal of Psychiatric Research, 75, 75–81.PubMedCrossRefGoogle Scholar
  162. Sanchez-Mora, C., et al. (2011). Exploring DRD4 and its interaction with SLC6A3 as possible risk factors for adult ADHD: A meta-analysis in four European populations. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(5), 600–612.CrossRefGoogle Scholar
  163. Sanchez-Mora, C., et al. (2013). Evaluation of single nucleotide polymorphisms in the miR-183-96-182 cluster in adulthood attention-deficit and hyperactivity disorder (ADHD) and substance use disorders (SUDs). European Neuropsychopharmacology, 23(11), 1463–1473.PubMedCrossRefGoogle Scholar
  164. Sanchez-Mora, C., et al. (2015). Case-control genome-wide association study of persistent attention-deficit hyperactivity disorder identifies FBXO33 as a novel susceptibility gene for the disorder. Neuropsychopharmacology, 40(4), 915–926.PubMedCrossRefGoogle Scholar
  165. Scheuerle, A., & Wilson, K. (2011). PARK2 copy number aberrations in two children presenting with autism spectrum disorder: Further support of an association and possible evidence for a new microdeletion/microduplication syndrome. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 156B(4), 413–420.CrossRefGoogle Scholar
  166. Schlander, M., Schwarz, O., Trott, G. E., Viapiano, M., & Bonauer, N. (2007). Who cares for patients with attention-deficit/hyperactivity disorder (ADHD)? Insights from Nordbaden (Germany) on administrative prevalence and physician involvement in health care provision. European Child & Adolescent Psychiatry, 16(7), 430–438.CrossRefGoogle Scholar
  167. Schwarz, R., et al. (2014). A preliminary study on methylphenidate-regulated gene expression in lymphoblastoid cells of ADHD patients. The World Journal of Biological Psychiatry, 16(3), 180–189.  https://doi.org/10.3109/15622975.2014.948064PubMedCrossRefGoogle Scholar
  168. Selek, S., Savas, H. A., Gergerlioglu, H. S., Bulut, M., & Yilmaz, H. R. (2008). Oxidative imbalance in adult attention deficit/hyperactivity disorder. Biological Psychology, 79(2), 256–259.PubMedCrossRefGoogle Scholar
  169. Shaw, P., et al. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19.649–19.654.CrossRefGoogle Scholar
  170. Shaw, P., et al. (2014). Mapping the development of the basal ganglia in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 53(7), 780–789.e711.PubMedCrossRefGoogle Scholar
  171. Shaywitz, S. E., Cohen, D. J., & Shaywitz, B. A. (1978). The biochemical basis of minimal brain dysfunction. The Journal of Pediatrics, 92(2), 179–187.PubMedCrossRefGoogle Scholar
  172. Silva, D., Colvin, L., Hagemann, E., & Bower, C. (2014). Environmental risk factors by gender associated with attention-deficit/hyperactivity disorder. Pediatrics, 133(1), e14–e22.PubMedCrossRefGoogle Scholar
  173. Skoglund, C., Chen, Q., D’Onofrio, B. M., Lichtenstein, P., & Larsson, H. (2014). Familial confounding of the association between maternal smoking during pregnancy and ADHD in offspring. Journal of Child Psychology and Psychiatry, 55(1), 61–68.PubMedCrossRefGoogle Scholar
  174. Slykerman, R. F., Thompson, J., Waldie, K. E., Murphy, R., Wall, C., & Mitchell, E. A. (2017). Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatrica, 106(1), 87–94.PubMedCrossRefGoogle Scholar
  175. Sochacki, J., Devalle, S., Reis, M., Mattos, P., & Rehen, S. (2016). Generation of urine iPS cell lines from patients with attention deficit hyperactivity disorder (ADHD) using a non-integrative method. Stem Cell Research, 17(1), 102–106.PubMedCrossRefGoogle Scholar
  176. Sonuga-Barke, E. J. (2015). Editorial: Diet and children’s behaviour problems – Disentangling urban myth from clinical reality. Journal of Child Psychology and Psychiatry, 56(5), 497–499.PubMedCrossRefGoogle Scholar
  177. Sonuga-Barke, E. J., & Castellanos, F. X. (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience and Biobehavioral Reviews, 31(7), 977–986.PubMedCrossRefGoogle Scholar
  178. Squassina, A., Lanktree, M., De Luca, V., Jain, U., Krinsky, M., Kennedy, J. L., & Muglia, P. (2008). Investigation of the dopamine D5 receptor gene (DRD5) in adult attention deficit hyperactivity disorder. Neuroscience Letters, 432(1), 50–53.PubMedCrossRefGoogle Scholar
  179. Srivastav, S., Walitza, S., & Grunblatt, E. (2017). Emerging role of miRNA in attention deficit hyperactivity disorder: A systematic review. Attention Deficit and Hyperactivity Disorders, 10(1), 49–63.  https://doi.org/10.1007/s12402-017-0232-yPubMedCrossRefGoogle Scholar
  180. Sudre, G., et al. (2017). Estimating the heritability of structural and functional brain connectivity in families affected by attention-deficit/hyperactivity disorder. JAMA Psychiatry, 74(1), 76–84.PubMedCrossRefGoogle Scholar
  181. Swinderen, B. van, & Brembs, B. (2010). Attention-like deficit and hyperactivity in a Drosophila memory mutant. The Journal of Neuroscience 30(3), 1003–1014.PubMedCrossRefGoogle Scholar
  182. Talge, N. M., Neal, C., & Glover, V. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry, 48(3–4), 245–261.PubMedCrossRefGoogle Scholar
  183. Tewar, S., et al. (2016). Association of bisphenol A exposure and attention-deficit/hyperactivity disorder in a national sample of U.S. children. Environmental Research, 150, 112–118.PubMedCrossRefGoogle Scholar
  184. Thapar, A., et al. (2009). Prenatal smoking might not cause attention-deficit/hyperactivity disorder: Evidence from a novel design. Biological Psychiatry, 66(8), 722–727.PubMedPubMedCentralCrossRefGoogle Scholar
  185. Uhl, G. R., et al. (2008). Genome-wide association for methamphetamine dependence: Convergent results from 2 samples. Archives of General Psychiatry, 65(3), 345–355.PubMedCrossRefGoogle Scholar
  186. Voet, M. van der, Harich, B., Franke, B., & Schenck, A. (2016). ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Molecular Psychiatry 21(4), 565–573.Google Scholar
  187. Vogel, S. W., et al. (2017). Attention-deficit/hyperactivity disorder symptoms and stress-related biomarkers. Psychoneuroendocrinology, 79, 31–39.PubMedCrossRefGoogle Scholar
  188. Volkow, N. D., et al. (2012). Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. The Journal of Neuroscience, 32(3), 841–849.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Wallis, D., et al. (2012). Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction. Brain Research, 1463, 85–92.PubMedCrossRefGoogle Scholar
  190. Weber, H., et al. (2014). SPOCK3, a risk gene for adult ADHD and personality disorders. European Archives of Psychiatry and Clinical Neuroscience, 264(5), 409–421.PubMedCrossRefGoogle Scholar
  191. Weber, H., et al. (2015). On the role of NOS1 ex1f-VNTR in ADHD-allelic, subgroup, and meta-analysis. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 168(6), 445–458.CrossRefGoogle Scholar
  192. Weder, N., et al. (2014). Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. Journal of the American Academy of Child and Adolescent Psychiatry, 53(4), 417–424.e415.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Weissflog, L., et al. (2013). KCNIP4 as a candidate gene for personality disorders and adult ADHD. European Neuropsychopharmacology, 23(6), 436–447.PubMedCrossRefGoogle Scholar
  194. Weitzdoerfer, R., et al. (2004). Neuronal nitric oxide synthase knock-out mice show impaired cognitive performance. Nitric Oxide, 10(3), 130–140.PubMedCrossRefGoogle Scholar
  195. Wiles, N. J., Northstone, K., Emmett, P., & Lewis, G. (2009). „Junk food“ diet and childhood behavioural problems: Results from the ALSPAC cohort. European Journal of Clinical Nutrition, 63(4), 491–498.PubMedCrossRefGoogle Scholar
  196. Wilmot, B., Fry, R., Smeester, L., Musser, E. D., Mill, J., & Nigg, J. T. (2016). Methylomic analysis of salivary DNA in childhood ADHD identifies altered DNA methylation in VIPR2. Journal of Child Psychology and Psychiatry, 57(2), 152–160.PubMedCrossRefGoogle Scholar
  197. Won, H., et al. (2011). GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nature Medicine, 17(5), 566–572.PubMedCrossRefGoogle Scholar
  198. Yamamoto, A., et al. (2014). Structural abnormalities of corpus callosum and cortical axonal tracts accompanied by decreased anxiety-like behavior and lowered sociability in spock3-mutant mice. Developmental Neuroscience, 36(5), 381–395.PubMedCrossRefGoogle Scholar
  199. Yin, C. L., et al. (2016). Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Molecular Autism, 7, 23.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Yu, C. J., et al. (2016). Increased risk of attention-deficit/hyperactivity disorder associated with exposure to organophosphate pesticide in Taiwanese children. Andrology, 4(4), 695–705.PubMedCrossRefGoogle Scholar
  201. Zhu, J., et al. (2017). A prenatal nicotine exposure mouse model of methylphenidate responsive ADHD-associated cognitive phenotypes. International Journal of Developmental Neuroscience, 58, 26–34.PubMedCrossRefGoogle Scholar
  202. Zhu, J. L., Olsen, J., Liew, Z., Li, J., Niclasen, J., & Obel, C. (2014). Parental smoking during pregnancy and ADHD in children: The Danish national birth cohort. Pediatrics, 134(2), e382–e388.PubMedCrossRefGoogle Scholar
  203. Zobel, A., & Maier, W. (2004). Endophenotype – A new concept for biological characterization of psychiatric disorders. Der Nervenarzt, 75(3), 205–214.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Psychiatrie, Psychosomatik und PsychotherapieUniversitätsklinikum Frankfurt am MainFrankfurt am MainDeutschland

Section editors and affiliations

  • Christian Mette
    • 1
  1. 1.Allgemeine PsychiatrieLVR-Klinikum EssenEssenDeutschland

Personalised recommendations