Advertisement

Implementierung von autonomen I4.0-Systemen mit BDI-Agenten

  • Richard VerbeetEmail author
  • Hartwig Baumgärtel
Living reference work entry
  • 60 Downloads
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Der Anforderung von Industrie 4.0 nach flexiblen Software-Architekturen für eine digitale Vernetzung kann durch Multiagenten-Systeme begegnet werden, die Integration autonomer Problemlösung erfordert aber kognitive Software-Architekturen, die über regelbasierte Systeme hinausgehen. BDI-Agenten sind durch ihre Ziel- und Kontext-Orientierung ein Lösungsansatz, da sie mit verschiedenen Stufen kognitiver Komplexität zur Bearbeitung von Aufgaben eingesetzt werden können. Ihre Kommunikation kann durch serviceorientierter Architekturen gewährleistet werden, wodurch auch die Anbindung an andere IT-Systeme erfolgen kann. Steuerungskonzepte für eine Supply Chain, ein Transportsystem und ein Produktionssystem demonstrieren den Einsatz von BDI-Agenten. Daraus wird eine Klassifikation von Agenten für industrielle Anwendungen abgeleitet. Abschließend wird eine ganzheitliche Industrie 4.0-Architektur durch das Framework Arrowhead, die Verwaltungsschale und BDI-Agenten beschrieben.

Schlüsselwörter

Industrie 4.0 I4.0-System BDI-Agent Multiagenten-System I4.0-Architektur Framework Middleware Agentenplattform Active-Component Active-Component-Shell Serviceorientierte Architektur Systemintegration Kognitive Komplexität Zeitsensitivität Autonomie RAMI4.0 Interoperabilität KoWest Supply Chain Produktionssystem 

Literatur

  1. Adeyeri MK, Mpofu K, Olukorede TA (2015) Integration of agent technology into manufacturing enterprise: a review and platform for industry 4.0. In: International Conference on Industrial Engineering and Operations Management (IEOM). Dubai, United Arab Emirates, S 1–10Google Scholar
  2. Ahn HJ, Lee H, Park SJ (2003) A flexible agent system for change adaption in supply chains. Expert Syst Appl:603–618Google Scholar
  3. Baumgärtel H (2019) Electronics and ICT as enabler for digital industry and optimized supply chain management covering the entire product lifecycle, Projektbericht, Productive 4.0 Project Consortium (ID: 737459)Google Scholar
  4. Baumgärtel H, Ehm H, Laaouane S, Gerhardt J, Kasprzik A (2018) Collaboration in supply chains for development of CPS enabled by semantic web technologies. In: 2018 Winter Simulation Conference (WSC). IEEE Press, Gothenburg, Sweden, S 3627–3638Google Scholar
  5. Bearzotti L, Salomone E, Chiotti O (2012) An autonomous multi-agent approach to supply chain event management. Int J Prod Econ:468–478Google Scholar
  6. Bellifemine F, Poggi A, Rimassa G (2001) JADE: a FIPA2000 compliant agent development environment. In: Proceedings of the 5th international conference on Autonomous agents. Montreal, Canada, S 216–217Google Scholar
  7. Bicaku A, Maksuti S, Hegedus C, Tauber M, Delsing J, Eliasson J (2018) Interacting with the arrowhead local cloud: on-boarding procedure, In: Proceedings 2018 IEEE Industrial Cyber-Physical Systems (ICPS), IEEE, Piscataway, USA, S 743–748Google Scholar
  8. Bogon T (2012) Agentenbasierte Schwarmintelligenz. DissertationGoogle Scholar
  9. Bratman M (1987) Intention, plans, and practical reason. Harvard University Press, CambridgeGoogle Scholar
  10. Braubach L, Pokahr A (2012) Developing distributed systems with active components and Jadex. Scalable Comput Pract Exp:100–120Google Scholar
  11. Braubach L, Lamersdorf W, Pokahr A (2003) Implementing a BDI-infrastructure for JADE agents. EXP, S 76–85Google Scholar
  12. Bussmann S (2012) Production 2000+. http://www.stefan-bussmann.de/en/agents/p2000p.html. Zugegriffen am 25.10.2019
  13. Bussmann S, Schild K (2001) An agent-based approach to the control of flexible production systems. In: 8th International Conference on Emerging Technologies and Factory Automation. Boston, USA, S 481–488Google Scholar
  14. Bussmann S, Jennings NR, Wooldridge MJ (2013) Multiagent systems for manufacturing control: a design methodology. Springer Science & Business Media. Springer-Verlag Berlin HeidelbergGoogle Scholar
  15. D’Andrea R, Wurman P (2008) Future challenges of coordinating hundreds of autonomous vehicles in distribution facilities. In: International Conference on Technologies for Practical Robot Applications (TePRA). Woburn, USA, S 80–83Google Scholar
  16. Delsing J (2017a) IoT automation: arrowhead framework. CRC Press, Taylor & Francis Group, Boca RatonCrossRefGoogle Scholar
  17. Delsing J (2017b) Local cloud internet of things automation: Technology and business model features of distributed internet of things automation solutions. IEEE Ind Electron Mag:8–21Google Scholar
  18. Derhamy H, Eliasson J, Delsing J, Priller P (2015) A survey of commercial frameworks for the internet of things. In: 20th Conference on Emerging Technologies & Factory Automation. Luxembourg City, Luxembourg, S 1–8Google Scholar
  19. DIN. 16593-1 (2018) Reference model for industrie 4.0 service architectures. DIN, Beuth Verlag GmbH, BerlinGoogle Scholar
  20. DIN. 19233 (1999) Leittechnik – Prozessautomatisierung – Automatisierung mit Prozessrechensystemen. DIN, Beuth Verlag GmbH, BerlinGoogle Scholar
  21. FIPA (2019) FIPA. http://www.fipa.org/index.html. Zugegriffen am 05.06.2019
  22. Fortino G, Russo W, Savaglio C, Shen W, Zhou M (2017) Agent-oriented cooperative smart objects: from IoT system design to implementation. IEEE Trans Syst Man Cybern:1–18Google Scholar
  23. Fujita K, Bai Q, Ito T, Zhang M, Ren F, Aydoğan R, Hadfi R (2017) Modern approaches to agent-based complex automated negotiation, Bd 674. Springer International Publishing, ChamCrossRefGoogle Scholar
  24. George M, Lansky A (1987) Reactive reasoning and planning: an experiment with a mobile robot. In: Proceedings of the 6th National Conference on Artificial Intelligence (AAAI 1987). Seattle, USA, S 677Google Scholar
  25. Grangel-González I, Halilaj L, Coskun G, Auer S, Collarana D, Hoffmeister M (2016) Towards a semantic administrative shell for industry 4.0 components. In: 10th International Conference on Semantic Computing (ICSC). Laguna Hills, USA, S 230–237Google Scholar
  26. Guerra-Hernández A, El Fallah-Seghrouchni A, Soldano H (2004) Learning in BDI multi-agent systems. In: International workshop on computational logic in multi-agent systems. Springer, Berlin/Heidelberg, S 218–233Google Scholar
  27. Herron D, Castillo O, Lewis R (2015) Systems and methods for individualized customer retail services using RFID wristbands: U.S. Patent Application(14/034,395)Google Scholar
  28. Jabeur N, Al-Belushi T, Mbarki M, Gharrad H (2017) Toward leveraging smart logistics collaboration with a multi-agent system based solution. Procedia Comput Sci:672–679.  https://doi.org/10.1016/j.procs.2017.05.374
  29. Kamdar R, Paliwal P, Kumar Y (2018) A state of art review on various aspects of multi-agent system. J Circuit Syst Comp:1830006.  https://doi.org/10.1142/S0218126618300064
  30. Kantamneni A, Brown L, Parker G, Weaver WW (2015) Survey of multi-agent systems for microgrid control. Eng Appl Artif Intell:192–203Google Scholar
  31. Khare AR, Kumar BY (2015) Multiagent structures in hybrid renewable power system: a review. J Renew Sustain Energy:63101.  https://doi.org/10.1063/1.4934668
  32. Kinny D, Georgeff M, Rao A (1996) A methodology and modelling technique for systems of BDI agents. In: European workshop on modelling autonomous agents in a multi-agent world. Springer, Berlin/Heidelberg, S 56–71Google Scholar
  33. Kirn S, Herzog O, Lockermann P, Spaniol O (2006) Multiagent engineering: Theory and applications in enterprises. International handbooks on information systems. Springer, Berlin/New YorkCrossRefGoogle Scholar
  34. Kravari K, Bassiliades N (2015) A survey of agent platforms. J Artif Soc Soc Simul:11Google Scholar
  35. Kunze O, Baumgärtel H, Neitmann A, Rosemeier S (2012) Dynamic Truck Meeting (DTM): Ein Prozess- & Schnittstellenstandard zur Realisierung von dynamischen Begegnungsverkehren mit Hilfe von Dispositions- und Telematik-Systemen (ca. 2012). https://edocs.tib.eu/files/e01fn12/731853814.pdf. Zugegriffen am 23.01.2020
  36. Laird J (2012) The Soar cognitive architecture. MIT Press, Cambridge, MA/LondonCrossRefGoogle Scholar
  37. Lu Y (2017) Industry 4.0: a survey on technologies, applications and open research issues. J Ind Inf Integr:1–10Google Scholar
  38. Malakuti S, Bock J, Weser M, Venet P, Zimmermann P, Wiegand M, Grothoff J, Wagner C, Bayha A (2018) Challenges in skill-based engineering of industrial automation systems *. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, Turin, Italien, S 67–74Google Scholar
  39. Mayer S (2009) Development of a completely decentralized control system for modular continuous conveyors. Dissertation, Karlsruhe Institute of TechnologyGoogle Scholar
  40. Park HS, Tran NH (2011) An autonomous manufacturing system for adapting to disturbances. Int J Adv Manuf Technol:1159–1165Google Scholar
  41. Pokahr A, Braubach L (2011) Active components: a software paradigm for distributed systems. In: Proceedings of International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2011). Lyon, France, S 141–144Google Scholar
  42. Pudāne M, Lavendelis E (2017) General guidelines for design of affective multi-agent systems. Appl Comput Syst:5–12.  https://doi.org/10.1515/acss-2017-0012
  43. Rao AS (1996) AgentSpeak (L): BDI agents speak out in a logical computable language. In: European workshop on modelling autonomous agents in a multi-agent world. Springer, Berlin/Heidelberg, S 42–55Google Scholar
  44. Riehle D (2000) Framework design: a role modeling approach. Dissertation, ETH ZürichGoogle Scholar
  45. Russell SJ, Norvig P (2016) Artificial intelligence: a modern approach. Pearson Education, Pearson Verlag, Boston Columbus IndianapolisGoogle Scholar
  46. Sun R, Merrill E, Peterson T (2001) From implicit skills to explicit knowledge: a bottom-up model of skill learning. Cogn Sci:203–244Google Scholar
  47. Tjahjono B, Esplugues C, Ares E, Pelaez G (2017) What does industry 4.0 mean to supply chain? Procedia Manuf:1175–1182Google Scholar
  48. Trunzer E, Cala A, Leitao P, Gepp M, Kinghorst J, Lüder A, Schauerte H, Reiferscheid M, Vogel-Heuser B (2019) System architectures for industrie 4.0 applications-derivation of a generic architecture proposal. Prod Eng:247–257Google Scholar
  49. Varga P, Blomstedt F, Ferreira LL, Eliasson J, Johansson M, Delsing J, Martínez de Soria I (2017) Making system of systems interoperable: the core components of the arrowhead framework. J Netw Comput Appl:85–95.  https://doi.org/10.1016/j.jnca.2016.08.028
  50. VDI/VDE. 2653 (2010) Agentensysteme in der Automatisierungstechnik. VDI/VDE, Berlin/HeidelbergGoogle Scholar
  51. VDI/VDE. 2653 (2013) Agentensysteme in der Automatisierungstechnik. VDI/VDE, Berlin/HeidelbergGoogle Scholar
  52. Vogel-Heuser B, Diedrich C, Pantforder D, Gohner P (2014) Coupling heterogeneous production systems by a multi-agent based cyber-physical production system. In: 12th International Conference on Industrial Informatics (INDIN). Porto Alegre, Brazil, S. 713–719Google Scholar
  53. Wang K (2016) Intelligent predictive maintenance (IPdM) system–industry 4. 0 scenario. WIT Trans Eng Sci:259–268Google Scholar
  54. Wooldridge MJ (2009) An introduction to multiagent systems, 2. Aufl. Wiley, ChichesterGoogle Scholar
  55. Wooldridge M, Jennings NR, Kinny D (2000) The Gaia methodology for agent-oriented analysis and design. Auton Agent Multi-Agent Syst:285–312Google Scholar
  56. Wörn H, Brinkschulte U (2006) Echtzeitsysteme. Grundlagen, Funktionsweisen, Anwendungen. Springer, BerlinzbMATHGoogle Scholar
  57. Ye X, Hong SH (2019) Toward industry 4.0 components: insights into and implementation of asset administration shells. IEEE Ind Electron Mag:13–25.  https://doi.org/10.1109/MIE.2019.2893397

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Institut für Betriebsorganisation und LogistikTechnische Hochschule UlmUlmDeutschland

Section editors and affiliations

  • Birgit Vogel-Heuser
    • 1
  1. 1.Lehrstuhl Automatisierung und InformationssystemeTechnische Universität MünchenGarchingDeutschland

Personalised recommendations