Advertisement

Pediatric Surgery pp 1237-1255 | Cite as

Hydrocephalus

  • Jonathan R. EllenbogenEmail author
  • J. Kandasamy
  • Conor L. Mallucci
Reference work entry

Abstract

The aim of this chapter is to explain the pathology of hydrocephalus, which relates to an imbalance between the production and absorption of cerebrospinal fluid (CSF) leading to increases in intracranial pressure. Hydrocephalus has numerous causes and may be congenital or arise secondary to other neurological insults. Although our understanding of CSF dynamics is still evolving, hydrocephalus has historically been divided into obstructive (radiologically visible obstructive lesion) and communicating/nonobstructive (no radiologically visible obstructive lesion). Treatment involves CSF diversion via endoscopic third ventriculostomy of implantation of a shunt. Many children lead normal active lives with shunts in situ. Future prognosis and good health are largely determined by avoiding complications and detecting shunt malfunction early. The chapter explains the pathology, symptoms, signs, investigation, management, and operative techniques involved in the care of patients with hydrocephalus.

Keywords

Hydrocephalus Cerebrospinal fluid (CSF) Brain tumor Intraventricular hemorrhage Ultrasound Computed tomography (CT) Magnetic resonance imaging (MRI) External ventricular drain Shunt Endoscopic third ventriculostomy Neuroendoscopy Infection Dandy-Walker complex Posterior fossa cysts 

Notes

Acknowledgments

This chapter has been adapted from the author’s own chapter in the following publication: Copyright © 2011 From Newborn Surgery, Third Edition, by Prem Puri. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

References

  1. Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52.PubMedCrossRefGoogle Scholar
  2. Adams-Chapman I, Hansen NI, Stoll BJ, Higgins R. Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics. 2008;121(5):e1167–77.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmann PA, Lazzara A, Dykes FD, Brann AW, Schwartz JF. Intraventricular hemorrhage in the high-risk preterm infant: incidence and outcome. Ann Neurol. 1980;7(2):118–24.PubMedCrossRefGoogle Scholar
  4. Alan N, Manjila S, Minich N, Bass N, Cohen AR, Walsh M, et al. Reduced ventricular shunt rate in very preterm infants with severe intraventricular hemorrhage: an institutional experience. J Neurosurg Pediatr. 2012;10(5):357–64.PubMedCrossRefGoogle Scholar
  5. Bassan H, Eshel R, Golan I, Kohelet D, Ben Sira L, Mandel D, et al. Timing of external ventricular drainage and neurodevelopmental outcome in preterm infants with posthemorrhagic hydrocephalus. Eur J Paediatr Neurol. 2012;16(6):662–70.PubMedCrossRefGoogle Scholar
  6. Bayston R. Epidemiology, diagnosis, treatment, and prevention of cerebrospinal fluid shunt infections. Neurosurg Clin N Am. 2001;12(4):703–8. viiiPubMedCrossRefGoogle Scholar
  7. Berger A, Weninger M, Reinprecht A, Haschke N, Kohlhauser C, Pollak A. Long-term experience with subcutaneously tunneled external ventricular drainage in preterm infants. Childs Nerv Syst. 2000;16(2):103–9. discussion 110PubMedCrossRefGoogle Scholar
  8. Blackburn BL, Fineman RM. Epidemiology of congenital hydrocephalus in Utah, 1940–1979: report of an iatrogenically related “epidemic”. Am J Med Genet. 1994;52(2):123–9.PubMedCrossRefGoogle Scholar
  9. Brockmeyer DL, Wright LC, Walker ML, Ward RM. Management of posthemorrhagic hydrocephalus in the low-birth-weight preterm neonate. Pediatr Neurosci. 1989;15(6):302–7. discussion 308PubMedCrossRefGoogle Scholar
  10. Buxton N, Macarthur D, Mallucci C, Punt J, Vloeberghs M. Neuroendoscopy in the premature population. Childs Nerv Syst. 1998;14(11):649–52.PubMedCrossRefGoogle Scholar
  11. Chang Chien HY, Chiu NC, Li WC, Huang FY. Characteristics of neonatal bacterial meningitis in a teaching hospital in Taiwan from 1984–1997. J Microbiol Immunol Infect=Wei mian yu gan ran za zhi. 2000;33(2):100–4.Google Scholar
  12. Cherian S, Whitelaw A, Thoresen M, Love S. The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol. 2004;14(3):305–11.PubMedCrossRefGoogle Scholar
  13. Clark S, Sangra M, Hayhurst C, Kandasamy J, Jenkinson M, Lee M, et al. The use of noninvasive electromagnetic neuronavigation for slit ventricle syndrome and complex hydrocephalus in a pediatric population. J Neurosurg Pediatr. 2008;2(6):430–4.PubMedCrossRefGoogle Scholar
  14. Cornips E, Van Calenbergh F, Plets C, Devlieger H, Casaer P. Use of external drainage for posthemorrhagic hydrocephalus in very low birth weight premature infants. Childs Nerv Syst. 1997;13(7):369–74.PubMedCrossRefGoogle Scholar
  15. Decq P, Blanquet A, Yepes C. Percutaneous jugular placement of ventriculo-atrial shunts using a split sheath Technical note. Acta Neurochir. 1995;136(1–2):92–4.PubMedCrossRefGoogle Scholar
  16. Dewan MC, Naftel RP. The global rise of endoscopic third ventriculostomy with choroid plexus cauterization in pediatric hydrocephalus. Pediatr Neurosurg. 2016;  https://doi.org/10.1159/000452809. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  17. Drake J, Sainte-Rose C. The shunt book. Cambridge: Blackwell Science; 1995. p. 228.Google Scholar
  18. Drake JM, Kestle JR, Milner R, Cinalli G, Boop F, Piatt J, et al. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery. 1998;43(2):294–303. discussion 303–305PubMedCrossRefGoogle Scholar
  19. Du Plessis AJ. The role of systemic hemodynamic disturbances in prematurity-related brain injury. J Child Neurol. 2009;24(9):1127–40.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ellegaard L, Mogensen S, Juhler M. Ultrasound-guided percutaneous placement of ventriculoatrial shunts. Childs Nerv Syst. 2007;23(8):857–62.PubMedCrossRefGoogle Scholar
  21. Fernell E, Hagberg G, Hagberg B. Infantile hydrocephalus – the impact of enhanced preterm survival. Acta Paediatr Scand. 1990;79(11):1080–6.PubMedCrossRefGoogle Scholar
  22. Fernell E, Hagberg G, Hagberg B. Infantile hydrocephalus epidemiology: an indicator of enhanced survival. Arch Dis Child Fetal Neonatal Ed. 1994;70(2):F123–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Fulmer BB, Grabb PA, Oakes WJ, Mapstone TB. Neonatal ventriculosubgaleal shunts. Neurosurgery. 2000;47(1):80–3. discussion 83–84PubMedGoogle Scholar
  24. Goh D, Minns RA, Pye SD. Transcranial Doppler (TCD) ultrasound as a noninvasive means of monitoring cerebrohaemodynamic change in hydrocephalus. Eur J Pediatr Sur Zeitschrift für Kinderchirurgie. 1991;1(Suppl 1):14–7.CrossRefGoogle Scholar
  25. Goitein D, Papasavas P, Gagné D, Ferraro D, Wilder B, Caushaj P. Single trocar laparoscopically assisted placement of central nervous system-peritoneal shunts. J Laparoendosc Adv Surg Tech A. 2006;16(1):1–4.PubMedCrossRefGoogle Scholar
  26. Halliday J, Chow CW, Wallace D, Danks DM. X linked hydrocephalus: a survey of a 20 year period in Victoria, Australia. J Med Genet. 1986;23(1):23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hayhurst C, Cooke R, Williams D, Kandasamy J, O’Brien DF, Mallucci CL. The impact of antibiotic-impregnated catheters on shunt infection in children and neonates. Childs Nerv Syst. 2008;24(5):557–62.PubMedCrossRefGoogle Scholar
  28. Heep A, Engelskirchen R, Holschneider A, Groneck P. Primary intervention for posthemorrhagic hydrocephalus in very low birthweight infants by ventriculostomy. Childs Nerv Syst. 2001;17(1–2):47–51.PubMedCrossRefGoogle Scholar
  29. Hudgins RJ. Posthemorrhagic hydrocephalus of infancy. Neurosurg Clin N Am. 2001;12(4):743–51. ixPubMedCrossRefGoogle Scholar
  30. Hudgins R, Boydston W, Gilreath C. Treatment of posthemorrhagic hydrocephalus in the preterm infant with a ventricular access device. Pediatr Neurosurg. 1998;29(6):309–13.PubMedCrossRefGoogle Scholar
  31. International Society of Ultrasound in Obstetrics & Gynecology Education Committee. Sonographic examination of the fetal central nervous system: guidelines for performing the “basic examination” and the “fetal neurosonogram”. Ultrasound Obstet Gynecol. 2007;29(1):109–16.CrossRefGoogle Scholar
  32. Jain H, Sgouros S, Walsh AR, Hockley AD. The treatment of infantile hydrocephalus: “differential-pressure” or “flow-control” valves. A pilot study. Childs Nerv Syst. 2000;16(4):242–6.PubMedCrossRefGoogle Scholar
  33. Javadpour M, Mallucci C, Brodbelt A, Golash A, May P. The impact of endoscopic third ventriculostomy on the management of newly diagnosed hydrocephalus in infants. Pediatr Neurosurg. 2001;35(3):131–5.PubMedCrossRefGoogle Scholar
  34. Javadpour M, May P, Mallucci C. Sudden death secondary to delayed closure of endoscopic third ventriculostomy. Br J Neurosurg. 2003;17(3):266–9.PubMedCrossRefGoogle Scholar
  35. Karas CS, Baig MN, Elton SW. Ventriculosubgaleal shunts at Columbus Children’s Hospital: neurosurgical implant placement in the neonatal intensive care unit. J Neurosurg. 2007;107(3 Suppl):220–3.PubMedGoogle Scholar
  36. Kennedy CR, Ayers S, Campbell MJ, Elbourne D, Hope P, Johnson A. Randomized, controlled trial of acetazolamide and furosemide in posthemorrhagic ventricular dilation in infancy: follow-up at 1 year. Pediatrics. 2001;108(3):597–607.PubMedCrossRefGoogle Scholar
  37. Kestle JRW, Drake JM, Cochrane DD, Milner R, Walker ML, Abbott R, et al. Lack of benefit of endoscopic ventriculoperitoneal shunt insertion: a multicenter randomized trial. J Neurosurg. 2003;98(2):284–90.PubMedCrossRefGoogle Scholar
  38. Kimelberg HK. Water homeostasis in the brain: basic concepts. Neuroscience. 2004;129(4):851–60.PubMedCrossRefGoogle Scholar
  39. Klinger G, Chin CN, Beyene J, Perlman M. Predicting the outcome of neonatal bacterial meningitis. Pediatrics. 2000;106(3):477–82.PubMedCrossRefGoogle Scholar
  40. Köksal V, Öktem S. Ventriculosubgaleal shunt procedure and its long-term outcomes in premature infants with post-hemorrhagic hydrocephalus. Childs Nerv Syst. 2010;26(11):1505–15.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Korinth M, Gilsbach J. What is the ideal initial valve pressure setting in neonates with ventriculoperitoneal shunts? Pediatr Neurosurg. 2002;36(4):169–74.PubMedCrossRefGoogle Scholar
  42. Kreusser KL, Tarby TJ, Kovnar E, Taylor DA, Hill A, Volpe JJ. Serial lumbar punctures for at least temporary amelioration of neonatal posthemorrhagic hydrocephalus. Pediatrics. 1985;75(4):719–24.PubMedGoogle Scholar
  43. Kulkarni AV, Sgouros S, Leitner Y, et al. International infant hydrocephalus study (IIHS): 5-year health outcome results of a prospective, multicenter comparison of endoscopic third ventriculostomy (ETV) and shunt for infant hydrocephalus. Childs Nerv Syst. 2018;34(12):2391–2397.  https://doi.org/10.1007/s00381-018-3896-5. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  44. Kumar R, Jain MK, Chhabra DK. Dandy-Walker syndrome: different modalities of treatment and outcome in 42 cases. Childs Nerv Syst. 2001;17(6):348–52.PubMedCrossRefGoogle Scholar
  45. Kurian J, Sotardi S, Liszewski MC, et al. Three-dimentional ultrasound of the neonatal brain: technical approach and spectrum of disease. Pediatr Radiol. 2017;47(5):613–27.PubMedCrossRefGoogle Scholar
  46. Kurschel S, Eder HG, Schleef J. CSF shunts in children: endoscopically-assisted placement of the distal catheter. Childs Nerv Syst. 2005;21(1):52–5.PubMedCrossRefGoogle Scholar
  47. Laroche J. In: Adams JH, Corsellis JAN, Duchen LW, editors. Greenfield’s neuropathology. 4th ed. New York: Wiley Medical Publications; 1984. p. 385–450.Google Scholar
  48. Lifshutz JI, Johnson WD. History of hydrocephalus and its treatments. Neurosurg Focus. 2001;11(2):E1.PubMedCrossRefGoogle Scholar
  49. Mallucci C, Sgouros S. Cerebrospinal fluid disorders. 1st ed. London: Informa Healthcare; 2009. p. 590.Google Scholar
  50. McComb JG, Ramos AD, Platzker AC, Henderson DJ, Segall HD. Management of hydrocephalus secondary to intraventricular hemorrhage in the preterm infant with a subcutaneous ventricular catheter reservoir. Neurosurgery. 1983;13(3):295–300.PubMedCrossRefGoogle Scholar
  51. Mohanty A, Biswas A, Satish S, Praharaj SS, Sastry KVR. Treatment options for Dandy-Walker malformation. J Neurosurg. 2006;105(5 Suppl):348–56.PubMedGoogle Scholar
  52. Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed. 2002;87(1):F37–41.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Naidich TP, McLone DG, Fulling KH. The Chiari II malformation: Part IV. The hindbrain deformity. Neuroradiology. 1983;25(4):179–97.PubMedCrossRefGoogle Scholar
  54. Noetzel MJ. Myelomeningocele: current concepts of management. Clin Perinatol. 1989;16(2):311–29.PubMedCrossRefGoogle Scholar
  55. O’Brien DF, Javadpour M, Collins DR, Spennato P, Mallucci CL. Endoscopic third ventriculostomy: an outcome analysis of primary cases and procedures performed after ventriculoperitoneal shunt malfunction. J Neurosurg. 2005;103(5 Suppl):393–400.PubMedGoogle Scholar
  56. O’Brien DF, Seghedoni A, Collins DR, Hayhurst C, Mallucci CL. Is there an indication for ETV in young infants in aetiologies other than isolated aqueduct stenosis? Childs Nerv Syst. 2006;22(12):1565–72.PubMedCrossRefGoogle Scholar
  57. Papadias A, Miller C, Martin WL, Kilby MD, Sgouros S. Comparison of prenatal and postnatal MRI findings in the evaluation of intrauterine CNS anomalies requiring postnatal neurosurgical treatment. Childs Nerv Syst. 2008;24(2):185–92.PubMedCrossRefGoogle Scholar
  58. Patel SK, Yuan W, Mangano FT. Advanced neuroimaging techniques in pediatric hydrocephalus. Pediatr Neurosurg. 2017;  https://doi.org/10.1159/000454717. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  59. Perlman JM, McMenamin JB, Volpe JJ. Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome. Relation to the development of intraventr icular hemorrhage. N Engl J Med. 1983;309(4):204–9.PubMedCrossRefGoogle Scholar
  60. Perret GE, Graf CJ. Subgaleal shunt for temporary ventricle decompression and subdural drainage. J Neurosurg. 1977;47(4):590–5.PubMedCrossRefGoogle Scholar
  61. Petraglia AL, Moravan MJ, Dimopoulos VG, Silberstein HJ. Ventriculosubgaleal shunting–a strategy to reduce the incidence of shunt revisions and slit ventricles: an institutional experience and review of the literature. Pediatr Neurosurg. 2011;47(2):99–107.PubMedCrossRefGoogle Scholar
  62. Prats JM, López-Heredia J, Gener B, Freijo MM, Garaizar C. Multilocular hydrocephalus: ultrasound studies of origin and development. Pediatr Neurol. 2001;24(2):149–51.PubMedCrossRefGoogle Scholar
  63. Redzic ZB, Segal MB. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev. 2004;56(12):1695–716.PubMedCrossRefGoogle Scholar
  64. Reinprecht A, Dietrich W, Berger A, Bavinzski G, Weninger M, Czech T. Posthemorrhagic hydrocephalus in preterm infants: long-term follow-up and shunt-related complications. Childs Nerv Syst. 2001;17(11):663–9.PubMedCrossRefGoogle Scholar
  65. Rekate HL. The slit ventricle syndrome: advances based on technology and understanding. Pediatr Neurosurg. 2004;40(6):259–63.PubMedCrossRefGoogle Scholar
  66. Rhodes TT, Edwards WH, Saunders RL, Harbaugh RE, Little CL, Morgan LJ, et al. External ventricular drainage for initial treatment of neonatal posthemorrhagic hydrocephalus: surgical and neurodevelopmental outcome. Pediatr Neurosci. 1987;13(5):255–62.PubMedCrossRefGoogle Scholar
  67. Rizvi SAA, Wood M. Ventriculosubgaleal shunting for post-haemorrhagic hydrocephalus in premature neonates. Pediatr Neurosurg. 2010;46(5):335–9.PubMedCrossRefGoogle Scholar
  68. Sáez-Llorens X, McCracken GH. Bacterial meningitis in children. Lancet. 2003;361(9375):2139–48.PubMedCrossRefGoogle Scholar
  69. Sainte-Rose C, Piatt JH, Renier D, Pierre-Kahn A, Hirsch JF, Hoffman HJ, et al. Mechanical complications in shunts. Pediatr Neurosurg. 1991;17(1):2–9.PubMedCrossRefGoogle Scholar
  70. Sheth SA, McGirt M, Woodworth G, Wang P, Rigamonti D. Ultrasound guidance for distal insertion of ventriculo-atrial shunt catheters: technical note. Neurol Res. 2009;31(3):280–2.PubMedCrossRefGoogle Scholar
  71. Shooman D, Portess H, Sparrow O. A review of the current treatment methods for posthaemorrhagic hydrocephalus of infants. Cerebrospinal Fluid Res. 2009;6:1.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Stein SC, Feldman JG, Apfel S, Kohl SG, Casey G. The epidemiology of congenital hydrocephalus. A study in Brooklyn, N.Y. 1968–1976. Childs Brain. 1981;8(4):253–62.PubMedGoogle Scholar
  73. Tenbrock K, Kribs A, Roth B, Speder B. Hyponatraemia as a consequence of serial liquor punctures in preterm infants with a ventricular access device after posthaemorrhagic hydrocephalus. Arch Dis Child Fetal Neonatal Ed. 2003;88(4):F351.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Tervonen J, Leinonen V, Jääskeläinen JE, Koponen S, Huttunen TJ. Rate and risk factors of shunt revision in pediatric hydrocephalus patients – population-based study. World Neurosurg. 2017; pii: S1878-8750(17)30192-4Google Scholar
  75. Tubbs RS, Banks JT, Soleau S, Smyth MD, Wellons JC, Blount JP, et al. Complications of ventriculosubgaleal shunts in infants and children. Childs Nerv Syst. 2005;21(1):48–51.PubMedCrossRefGoogle Scholar
  76. Van de Bor M, Verloove-Vanhorick SP, Brand R, Keirse MJ, Ruys JH. Incidence and prediction of periventricular-intraventricular hemorrhage in very preterm infants. J Perinat Med. 1987;15(4):333–9.PubMedCrossRefGoogle Scholar
  77. Von Koch CS, Gupta N, Sutton LN, Sun PP. In utero surgery for hydrocephalus. Childs Nerv Syst. 2003;19(7–8):574–86.CrossRefGoogle Scholar
  78. Wagner W, Koch D. Mechanisms of failure after endoscopic third ventriculostomy in young infants. J Neurosurg. 2005;103(1 Suppl):43–9.PubMedGoogle Scholar
  79. Warf BC. Hydrocephalus in Uganda: the predominance of infectious origin and primary management with endoscopic third ventriculostomy. J Neurosurg. 2005a;102(1 Suppl):1–15.PubMedGoogle Scholar
  80. Warf BC. Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg. 2005b;103(6 Suppl):475–81.PubMedGoogle Scholar
  81. Warf BC, Campbell JW, Riddle E. Initial experience with combined endoscopic third ventriculostomy and choroid plexus cauterization for post-hemorrhagic hydrocephalus of prematurity: the importance of prepontine cistern status and the predictive value of FIESTA MRI imaging. Childs Nerv Syst. 2011;27(7):1063–71.PubMedCrossRefGoogle Scholar
  82. Weller RO, Shulman K. Infantile hydrocephalus: clinical, histological, and ultrastructural study of brain damage. J Neurosurg. 1972;36(3):255–65.PubMedCrossRefGoogle Scholar
  83. Weninger M, Salzer HR, Pollak A, Rosenkranz M, Vorkapic P, Korn A, et al. External ventricular drainage for treatment of rapidly progressive posthemorrhagic hydrocephalus. Neurosurgery. 1992;31(1):52–7. discussion 57–58PubMedGoogle Scholar
  84. Whitelaw A, Lee-Kelland R. Repeated lumbar or ventricular punctures in newborns with intraventricular haemorrhage. Cochrane Database Syst Rev (Online). 2017;(4):CD000216.Google Scholar
  85. Whitelaw A, Kennedy CR, Brion LP. Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation. Cochrane Database Syst Rev (Online). 2001;(2):CD002270.Google Scholar
  86. Willis B, Javalkar V, Vannemreddy P, Caldito G, Matsuyama J, Guthikonda B, et al. Ventricular reservoirs and ventriculoperitoneal shunts for premature infants with posthemorrhagic hydrocephalus: an institutional experience. J Neurosurg Pediatr. 2009;3(2):94–100.PubMedCrossRefGoogle Scholar
  87. Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M. Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics. 2005;115(4):997–1003.PubMedCrossRefGoogle Scholar
  88. Zador Z, Coope DJ, Mostofi A, Kamaly-Asl ID. Operative planning aid for optimal endoscopic third ventriculostomy entry points in pediatric cases. Childs Nerv Syst. 2017;33(2):269–73.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Zahl SM, Wester K. Routine measurement of head circumference as a tool for detecting intracranial expansion in infants: what is the gain? A nationwide survey. Pediatrics. 2008;121(3):e416–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Jonathan R. Ellenbogen
    • 1
    • 2
    Email author
  • J. Kandasamy
    • 3
  • Conor L. Mallucci
    • 1
  1. 1.Department of NeurosurgeryAlder Hey Children’s NHS Foundation TrustLiverpoolUK
  2. 2.Department of NeurosurgeryThe Walton Centre NHS Foundation TrustLiverpoolUK
  3. 3.Department of NeurosurgeryWestern General HospitalEdinburghUK

Personalised recommendations