Advertisement

Netzwerkanalyse in der Politikwissenschaft

  • Philip LeifeldEmail author
Living reference work entry
Part of the Springer Reference Sozialwissenschaften book series (SRS)

Zusammenfassung

Die Netzwerkanalyse ist eine Sammlung von Methoden zur Analyse von Interaktionen oder Beziehungen zwischen Akteuren. In der Politikwissenschaft finden diese Methoden breite Anwendung, da Politik häufig in Gruppenkontexten mit potenzieller gegenseitiger Relevanz der Akteure abläuft, während konventionelle Nicht-Netzwerk-Methoden die Unabhängigkeit (oder höchstens triviale Abhängigkeit) der Akteure in diesen Kontexten annehmen. Netzwerkanalyse erlaubt die gleichzeitige Analyse von Akteuren und ihren Beziehungen als komplexes System. Es existieren Methoden zur Beschreibung und Visualisierung von Netzwerken sowie zur statistischen Modellierung von Netzwerken. Die statistischen Methoden lassen sich grob in statische Modelle für einen beobachteten Zeitpunkt und in temporale Netzwerkmodelle unterteilen sowie in Modelle für Netzwerke oder Dyaden als abhängige Variable und Modelle für in Netzwerken geschachtelte individuelle Beobachtungen. Das Kapitel gibt einen Überblick über diese verschiedenen Methoden und ihre Anwendung in der Politikwissenschaft und stellt den aktuellen Forschungsstand vor.

Schlüsselwörter

Netzwerk Relationale Daten Graph Inferenz Abhängige Beobachtungen Komplexe Systeme 

Literatur

  1. Böhmelt, Tobias, Benjamin Campbell, Skyler Cranmer, Bailey Fosdick, und Frank Marrs. 2017. Ratifying environmental agreements: A joint analysis of exogenous influences, network dependence, and spatial effects. Vortrag an der 10. Political Networks Conference, Columbus, 14–17. Juni.Google Scholar
  2. Bomin, Kim, Zachary Jones, Bruce Desmarais, und Hanna Wallach. 2017. A network model for continuous-time textual communications with application to government email corpora. Vortrag an der 10. Political Networks Conference, Columbus, 14–17. Juni.Google Scholar
  3. Brandenberger, Laurence. 2017. rem: Relational event models (REM). R-Paket Version 1.2.8. https://CRAN.R-project.org/package=rem. Zugegriffen am 01.09.2018.
  4. Brandenberger, Laurence. 2018. Trading favors – Examining the temporal dynamics of reciprocity in Congressional collaborations using relational event models. Social Networks 54:238–253.CrossRefGoogle Scholar
  5. Brandes, Ulrik, Patrick Kenis, Jörg Raab, Volker Schneider, und Dorothea Wagner. 1999. Explorations into the visualization of policy networks. Journal of Theoretical Politics 11(1): 75–106.CrossRefGoogle Scholar
  6. Brandes, Ulrik, Jörg Raab, und Dorothea Wagner. 2001. Exploratory network visualizations: Simultaneous display of actor status and connections. Journal of Social Structure 2(4). https://www.cmu.edu/joss/content/articles/volume2/BrandesRaabWagner.html.
  7. Brandes, Ulrik, Patrick Kenis, und Dorothea Wagner. 2003. Communicating centrality in policy network drawings. IEEE Transactions on Visualization and Computer Graphics 9(2): 241–253.CrossRefGoogle Scholar
  8. Brandes, Ulrik, Patrick Kenis, und Jörg Raab. 2006. Explanation through network visualization. Methodology 2(1): 16.CrossRefGoogle Scholar
  9. Butts, Carter T. 2008a. A relational event framework for social action. Sociological Methodology 38(1): 155–200.CrossRefGoogle Scholar
  10. Butts, Carter T. 2008b. Social network analysis with sna. Journal of Statistical Software 24(6): 1–51.CrossRefGoogle Scholar
  11. Cartwright, Dorwin, und Frank Harary. 1956. Structikural balance: A generalization of Heider’s Theory. Psychological Review 63(5): 277–293.CrossRefGoogle Scholar
  12. Cranmer, Skyler J., und Bruce A. Desmarais. 2011. Inferential network analysis with exponential random graph models. Political Analysis 19(1): 66–86.CrossRefGoogle Scholar
  13. Cranmer, Skyler J., Bruce A. Desmarais, und Elizabeth J. Menninga. 2012. Complex dependencies in the alliance network. Conflict Management and Peace Science 29(3): 279–313.CrossRefGoogle Scholar
  14. Cranmer, Skyler J., Elizabeth J. Menninga, und Peter J. Mucha. 2015. Kantian fractionalization predicts the conflict propensity of the international system. Proceedings of the National Academy of Sciences 112(38): 11812–11816.CrossRefGoogle Scholar
  15. Cranmer, Skyler J., Philip Leifeld, Scott D. McClurg, und Meredith Rolfe. 2017. Navigating the range of statistical tools for inferential network Analysis. American Journal of Political Science 61(1): 237–251.CrossRefGoogle Scholar
  16. Dekker, David, David Krackhardt, und Tom A. B. Snijders. 2007. Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika 72(4): 563–581.CrossRefGoogle Scholar
  17. Desmarais, Bruce A., und Skyler J. Cranmer. 2012. Statistical inference for valued-edge networks: The generalized exponential random graph model. PloS ONE 7(1): e30136.CrossRefGoogle Scholar
  18. Desmarais, Bruce A., Jeffrey J. Harden, und Frederick J. Boehmke. 2015. Persistent policy pathways: Inferring diffusion networks in the American states. American Political Science Review 109(2): 392–406.CrossRefGoogle Scholar
  19. Doreian, Patrick, Klaus Teuter, und Chi-Hsein Wang. 1984. Network autocorrelation models: Some Monte Carlo results. Sociological Methods & Research 13(2): 155–200.CrossRefGoogle Scholar
  20. Fellows, Ian, und Mark Handcock. 2017. Removing phase transitions from Gibbs measures. In Proceedings of the 20th international conference on artificial intelligence and statistics, 289–297.Google Scholar
  21. Fisher, Dana R., Philip Leifeld, und Yoko Iwaki. 2013a. Mapping the ideological networks of American climate politics. Climatic Change 116(3–4): 523–545.CrossRefGoogle Scholar
  22. Fisher, Dana R., Joseph Waggle, und Philip Leifeld. 2013b. Where does political polarization come from? Locating polarization within the US climate change debate. American Behavioral Scientist 57(1): 70–92.CrossRefGoogle Scholar
  23. Gomez-Rodriguez, Manuel, Jure Leskovec, und Andreas Krause. 2012. Inferring networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, 1019–1028. ACM.Google Scholar
  24. Goodreau, Steven M., Mark S. Handcock, David R. Hunter, Carter T. Butts, und Martina Morris. 2008. A statnet tutorial. Journal of Statistical Software 24(9): 1–26.CrossRefGoogle Scholar
  25. Handcock, Mark S., David R. Hunter, Carter T. Butts, Steven M. Goodreau, und Martina Morris. 2008. statnet: Software tools for the representation, visualization, analysis and simulation of network data. Journal of Statistical Software 24(1): 1–11.CrossRefGoogle Scholar
  26. Hays, Jude C., Aya Kachi, und Robert J. Franzese. 2010. A spatial model incorporating dynamic, endogenous network interdependence: A political science application. Statistical Methodology 7(3): 406–428.CrossRefGoogle Scholar
  27. Heaney, Michael T., und Philip Leifeld. 2018. Contributions by interest groups to lobbying coalitions. The Journal of Politics 80(2): 494–509.CrossRefGoogle Scholar
  28. Hennig, Marina, Ulrik Brandes, Jürgen Pfeffer, und Ines Mergel. 2012. Studying social networks: A guide to empirical research. Frankfurt a. M.: Campus Verlag.Google Scholar
  29. Hoff, Peter D. 2005. Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association 100(469): 286–295.CrossRefGoogle Scholar
  30. Hoff, Peter D. 2015. Dyadic data analysis with amen. arXiv Preprint arXiv: 1506.08237.Google Scholar
  31. Hoff, Peter D., Adrian E. Raftery, und Mark S. Handcock. 2002. Latent space approaches to social network analysis. Journal of the American Statistical Association 97(460): 1090–1098.CrossRefGoogle Scholar
  32. Hoff, Peter D., Bailey Fosdick, Alex Volfovsky, und Yanjun He. 2017. amen: Additive and multiplicative effects models for networks and relational data. R-Paket Version 1.3. https://CRAN.R-project.org/package=amen. Zugegriffen am 24.11.2018.
  33. Hunter, David R. 2007. Curved exponential family models for social networks. Social Networks 29(2): 216–230.CrossRefGoogle Scholar
  34. Hunter, David R., Steven M. Goodreau, und Mark S. Handcock. 2008a. Goodness of fit of social network models. Journal of the American Statistical Association 103(481): 248–258.CrossRefGoogle Scholar
  35. Hunter, David R., Mark S. Handcock, Carter T. Butts, Steven M. Goodreau, und Martina Morris. 2008b. ergm: A package to fit, simulate and diagnose exponential-family models for networks. Journal of Statistical Software 24(3): 1–29.CrossRefGoogle Scholar
  36. Ingold, Karin, und Philip Leifeld. 2016. Structural and institutional determinants of influence reputation: A comparison of collaborative and adversarial policy networks in decision making and implementation. Journal of Public Administration Research and Theory 26(1): 1–18.CrossRefGoogle Scholar
  37. Kaufmann, Michael, und Dorothea Wagner. 2003. Drawing graphs: Methods and models. In Lecture notes in computer science 2025. Berlin: Springer.Google Scholar
  38. Kenny, David A., und Lawrence La Voie. 1984. The social relations model. Advances in Experimental Social Psychology 18:141–182.Google Scholar
  39. Krackhardt, David. 1988. Predicting with networks: Nonparametric multiple regression analysis of dyadic data. Social Networks 10(4): 359–381.CrossRefGoogle Scholar
  40. Krebs, Vladis E. 2001. Mapping networks of terrorist cells. Connections 24(3): 43–52.Google Scholar
  41. Krivitsky, Pavel N., und Mark S. Handcock. 2014. A sparable model for dynamic networks. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76(1): 29–46.CrossRefGoogle Scholar
  42. Leenders, Roger Th. A. J. 2002. Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks 24(1): 21–47.CrossRefGoogle Scholar
  43. Leifeld, Philip. 2013. Reconceptualizing major policy change in the advocacy coalition framework: A discourse network analysis of German pension politics. Policy Studies Journal 41(1): 169–198.CrossRefGoogle Scholar
  44. Leifeld, Philip. 2016. Policy debates as dynamic networks: German pension politics and privatization discourse. Frankfurt a. M./New York: Campus.Google Scholar
  45. Leifeld, Philip. 2017. Discourse network analysis: Policy debates as dynamic networks. In The Oxford handbook of political networks, Hrsg. J. N. Victor, M. N. Lubell und A. H. Montgomery, 301–326. Oxford University Press.Google Scholar
  46. Leifeld, Philip. 2018. Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions. Physica A: Statistical Mechanics and its Applications 507:510–523.CrossRefGoogle Scholar
  47. Leifeld, Philip, und Skyler J. Cranmer. 2017. tnam. Temporal network autocorrelation models. R-Paket Version 1.6.5. https://CRAN.R-project.org/package=tnam. Zugegriffen am 24.11.2018.
  48. Leifeld, Philip, und Skyler J. Cranmer. 2018. A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model. Network Science. [vor Druck].Google Scholar
  49. Leifeld, Philip, und Dana R. Fisher. 2017. Membership nominations in international scientific assessments. Nature Climate Change 7(10): 730–735.CrossRefGoogle Scholar
  50. Leifeld, Philip, und Sebastian Haunss. 2012. Political discourse networks and the conflict over software patents in Europe. European Journal of Political Research 51(3): 382–409.CrossRefGoogle Scholar
  51. Leifeld, Philip, und Karin Ingold. 2016. Co-authorship networks in Swiss political research. Swiss Political Science Review 22(2): 264–287.CrossRefGoogle Scholar
  52. Leifeld, Philip, und Volker Schneider. 2012. Information exchange in policy networks. American Journal of Political Science 56(3): 731–744.CrossRefGoogle Scholar
  53. Leifeld, Philip, Sandra Wankmüller, Valentin T. Z. Berger, Karin Ingold, und Christiane Steiner. 2017. Collaboration patterns in the German political science co-authorship network. PLoS ONE 12(4): e0174671.CrossRefGoogle Scholar
  54. Leifeld, Philip, Skyler J. Cranmer, und Bruce A. Desmarais. 2018. Temporal exponential random graph models with btergm: Estimation and bootstrap confidence intervals. Journal of Statistical Software 83(6): 1–36.CrossRefGoogle Scholar
  55. Lerner, Jürgen, Margit Bussmann, Tom A. B. Snijders, und Ulrk Brandes. 2013. Modeling frequency and type of interaction in event networks. Corvinus Journal of Sociology and Social Policy 4(1): 3–32.Google Scholar
  56. Li, Weihua, Aisha E. Bradshaw, Caitlin B. Clary, und Skyler J. Cranmer. 2017. A three-degree horizon of peace in the military alliance network. Science Advances 3(3): e1601895.CrossRefGoogle Scholar
  57. Linder, Fridolin, und Bruce A. Desmarais. 2018. NetworkInference: Inferring latent diffusion networks. R-Paket Version 1.2.3. https://CRAN.R-project.org/package=NetworkInference. Zugegriffen am 24.11.2018.
  58. Lusher, Dean, Johan Koskinen, und Garry Robins. 2013. Exponential random graph models for social networks: Theory, methods, and applications. New York: Cambridge University Press.Google Scholar
  59. Malang, Thomas, Laurence Brandenberger, und Philip Leifeld. 2018. Networks and social influence in European legislative politics. British Journal of Political Science. Vor Druck.Google Scholar
  60. Marcum, Christopher S., und Carter T. Butts. 2015. Constructing and modifying sequence statistics for relevent using informR in R. Journal of Statistical Software 64(5): 1–36.CrossRefGoogle Scholar
  61. Montgomery, Jacob M., und Brendan Nyhan. 2017. The effects of Congressional staff networks in the US House of Representatives. The eJournal of Politics 79(3): 745–761.Google Scholar
  62. Morris, Martina, Mark S. Handcock, und David R. Hunter. 2008. Specification of exponential-family random graph models: Terms and computational aspects. Journal of Statistical Software 24(4): 1–24.CrossRefGoogle Scholar
  63. Nagels, Melanie. 2016. Polarisierung im politischen Diskurs: Eine Netzwerkanalyse zum Konflikt um „Stuttgart 21“. Berlin: Springer.CrossRefGoogle Scholar
  64. Phadke, Sayali, und Bruce A. Desmarais. 2016. Network effects in field experiments on interactive groups: Cases from legislative studies. Vortrag an der 9. Political Networks Conference, Washington University in St. Louis, 23–25. Juni. https://ssrn.com/abstract=2799074. Zugegriffen am 24.11.2018.
  65. Robins, Garry, Pip Pattison, Yuval Kalish, und Dean Lusher. 2007. An introduction to exponential random graph (p*) models for social networks. Social Networks 29(2): 173–191.CrossRefGoogle Scholar
  66. Rule, Alix, Jean-Philippe Cointet, und Peter S. Bearman. 2015. Lexical shifts, substantive changes, and continuity in state of the union discourse, 1790–2014. Proceedings of the National Academy of Sciences 112(35): 10837–10844.CrossRefGoogle Scholar
  67. Schneider, Volker, Frank Janning, Philip Leifeld, und Thomas Malang. 2009. Politiknetzwerke. Modelle, Anwendungen und Visualisierungen. Wiesbaden: VS Verlag.Google Scholar
  68. Schoch, David, und Ulrik Brandes. 2016. Re-conceptualizing centrality in social networks. European Journal of Applied Mathematics 27(6): 971–985.CrossRefGoogle Scholar
  69. Scott, John. 2017. Social network analysis, 4. Aufl. Thousand Oaks: Sage.Google Scholar
  70. Shalizi, Cosma R., und Andrew C. Thomas. 2011. Homophily and contagion are generically confounded in observational social network studies. Sociological Methods & Research 40(2): 211–239.CrossRefGoogle Scholar
  71. Snijders, Tom A., Philippa E. Pattison, Garry L. Robins, und Mark S. Handcock. 2006. New specifications for exponential random graph models. Sociological Methodology 36(1): 99–153.CrossRefGoogle Scholar
  72. Snijders, Tom A., Gerhard G. van de Bunt, und Christian E. G. Steglich. 2010. Introduction to stochastic actor-based models for network dynamics. Social Networks 32(1): 44–60.CrossRefGoogle Scholar
  73. Wang, Peng, Garry Robins, und Philippa E. Pattison. 2006. PNet: A program for the simulation and estimation of exponential random graph models. Melbourne: University of Melbourne.Google Scholar
  74. Ward, Michael D., Randolph M. Siverson, und Xun Cao. 2007. Disputes, democracies, and dependencies: A reexamination of the Kantian peace. American Journal of Political Science 51(3): 583–601.CrossRefGoogle Scholar
  75. Ward, Michael D., John S. Ahlquist, und Arturas Rozenas. 2013. Gravity’s rainbow: A dynamic latent space model for the world trade network. Network Science 1(1): 95–118.CrossRefGoogle Scholar
  76. Wasserman, Stanley, und Katherine Faust. 1994. Social network analysis: Methods and applications. New York: Cambridge University Press.Google Scholar
  77. Wilson, James D., Matthew J. Denny, Shankar Bhamidi, Skyler J. Cranmer, und Bruce A. Desmarais. 2017. Stochastic weighted graphs: Flexible model specification and simulation. Social Networks 49:37–473.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GovernmentUniversity of Essex, Wivenhoe ParkColchesterGroßbritannien

Personalised recommendations