Advertisement

Forecasting

  • Arndt Leininger
Living reference work entry

Later version available View entry history

Part of the Springer Reference Sozialwissenschaften book series (SRS)

Zusammenfassung

Prognosen stellen in der Politikwissenschaft ein zwar noch kleines, aber stetig wachsendes Forschungsfeld dar, welches in verschiedenen Teilbereichen der Disziplin Anwendung findet. Gemeint sind hiermit statistische Modelle, mit denen explizit politikwissenschaftlich relevante Phänomene vor ihrem Eintreten vorhergesagt werden. Dabei folgen sie den wissenschaftlichen Leitlinien der intersubjektiven Nachvollziehbarkeit und Reproduzierbarkeit. Dieser Beitrag führt ein in die Grundlagen politikwissenschaftlicher Prognosen. Den Schwerpunkt der Darstellung bilden Wahlprognosen, insbesondere strukturelle Modelle, welche beispielhaft anhand eines kanonischen Wahlprognosemodells erläutert werden. Daneben werden synthetische Modelle, Aggregationsmodelle, „Wisdom of the crowd“-Ansätze und Prognosemärkte diskutiert.

Schlüsselwörter

Forecasting Prognosen Quantitative Methoden Wahlprognosen Konfliktforschung 

Literatur

  1. Abramowitz, Alan I. 2012. Forecasting in a polarized era: The time for change model and the 2012 presidential election. PS: Political Science & Politics 45(4): 618–619.Google Scholar
  2. Armstrong, J. Scott. 2012. Illusions in regression analysis. International Journal of Forecasting 28(3): 689–694.CrossRefGoogle Scholar
  3. Bechtel, Michael M., und Dirk Leuffen. 2010. Forecasting European union politics: Real-time forecasts in political time series analysis. European Union Politics 11(2): 309–327.CrossRefGoogle Scholar
  4. Berg, Joyce, Robert Forsythe, Forrest Nelson, und Thomas Rietz. 2008. Results from a dozen years of election futures markets research. In Handbook of experimental economics results, Bd. 1, 742–751. Elsevier.CrossRefGoogle Scholar
  5. Blumenthal, Mark. 2014. Polls, forecasts, and aggregators. PS: Political Science & Politics 47(2): 297–300.Google Scholar
  6. Campbell, James E. 2004. Introduction – The 2004 presidential election forecasts. PS: Political Science & Politics 37(4): 733–735.Google Scholar
  7. Colomer, Josep M. 2007. What other sciences look like. European Political Science 6(2): 134–142.CrossRefGoogle Scholar
  8. Eijk, Ceesvan der. 2005. Election forecasting: A sceptical view. The British Journal of Politics & International Relations 7(2): 210–214.Google Scholar
  9. Erikson, Robert S., und Christopher Wlezien. 2012. The timeline of presidential elections: How campaigns do (and do not) matter. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  10. Erikson, Robert S., und Christopher Wlezien. 2014. Forecasting US presidential elections using economic and noneconomic fundamentals. PS: Political Science & Politics 47(2): 313–316.Google Scholar
  11. Fair, Ray C. 1978. The effect of economic events on votes for president. The Review of Economics and Statistics 60(2): 159–173.CrossRefGoogle Scholar
  12. Forsythe, R., F. Nelson, G. Neumann, und J. Wright. 1989. The Iowa presidential stock market: A field experiment. In Research in experimental economics, Hrsg. R. Issac, Bd. 4. Westport: JAI Press.Google Scholar
  13. Foucault, Martial. 2012. Forecasting the 2012 French legislative election. French Politics 10(1): 68–83.CrossRefGoogle Scholar
  14. Gleditsch, Kristian Skrede, und Michael D. Ward. 2013. Forecasting is difficult, especially about the future: Using contentious issues to forecast interstate disputes. Journal of Peace Research 50(1): 17–31.CrossRefGoogle Scholar
  15. Graefe, Andreas. 2014. Accuracy of vote expectation surveys in forecasting elections. Public Opinion Quarterly 78(1): 204–232.CrossRefGoogle Scholar
  16. Graefe, Andreas. 2015a. German election forecasting: Comparing and combining methods for 2013. German Politics 24(2): 195–204.CrossRefGoogle Scholar
  17. Graefe, Andreas. 2015b. Improving forecasts using equally weighted predictors. Journal of Business Research 68(8): 1792–1799.CrossRefGoogle Scholar
  18. Graefe, Andreas. 2017. The pollyVote’s long-term forecast for the 2017 German Federal Election. Political Science & Politics 50(3): 693–696.Google Scholar
  19. Graefe, Andreas, J. Scott Armstrong, Randall J. Jones Jr., Alfred, und G. Cuzán. 2014. Combining forecasts: An application to elections. International Journal of Forecasting 30(1): 43–54.CrossRefGoogle Scholar
  20. Gschwend, Thomas, und Helmut Norpoth. 2001. ‚Wenn am nächsten Sonntag .‘: Ein Prognosemodell für Bundestagswahlen. In Wahlen und Wähler: Analysen aus Anlass der Bundestagswahl 1998, Hrsg. Hans-Dieter Klingemann und Max Kaase, 473–499. Wiesbaden: Westdeutscher Verlag.CrossRefGoogle Scholar
  21. Gschwend, Thomas, und Helmut Norpoth. 2005. Prognosemodell auf dem Prüfstand: Die Bundestagswahl 2005. Politische Vierteljahresschrift 46(4): 682–688.CrossRefGoogle Scholar
  22. Hibbs, Douglas A. 1982. President Reagan’s mandate from the 1980 elections: A shift to the right? American Politics Research 10(4): 387–420.CrossRefGoogle Scholar
  23. Huberty, Mark. 2015. Can we vote with our tweet? On the perennial difficulty of election forecasting with social media. International Journal of Forecasting 31(3): 992–1007.CrossRefGoogle Scholar
  24. Kastellec, Jonathan P. 2010. The statistical analysis of judicial decisions and legal rules with classification trees. Journal of Empirical Legal Studies 7(2): 202–230.CrossRefGoogle Scholar
  25. Kennedy, Ryan, Stefan Wojcik, und David Lazer. 2017. Improving election prediction internationally. Science 355(6324): 515–520.CrossRefGoogle Scholar
  26. King, Gary, Michael Tomz, und Jason Wittenberg. 2000. Making the most of statistical analyses: Improving interpretation and presentation. American Journal of Political Science 44:347–361.CrossRefGoogle Scholar
  27. Klarner, Carl. 2008. Forecasting the 2008 U.S. House, Senate and presidential elections at the district and state level. PS: Political Science and Politics 41(4): 723–728.Google Scholar
  28. Krueger, Joel T., und Kenneth Kuttner. 1996. The fed funds futures rate as a predictor of federal reserve policy. The Journal of Futures Markets 16(8): 865–879.CrossRefGoogle Scholar
  29. Küntzler, Theresa. 2018. Using data combination of fundamental variable-based forecasts and poll-based forecasts to predict the 2013 German election. German Politics 27(1): 1–19.CrossRefGoogle Scholar
  30. Leininger, Arndt. 2015. Wissenschaftliche Wahlprognosen – Alternative oder Ergänzung zu Umfragen? Zeitschrift für Parlamentsfragen 46(4): 675–691.CrossRefGoogle Scholar
  31. Lewis-Beck, Michael S. 2005. Election forecasting: Principles and practice. The British Journal of Politics & International Relations 7(2): 145–164.CrossRefGoogle Scholar
  32. Lewis-Beck, Michael S., und Tom W. Rice. 1992. Forecasting elections. Washington, DC: CQ Press.Google Scholar
  33. Lewis-Beck, Michael S., und Andrew Skalaban. 1989. Citizen forecasting: Can voters see into the future? British Journal of Political Science 19(1): 146–153.CrossRefGoogle Scholar
  34. Lewis-Beck, Michael S., Richard Nadeau, und Éric Bélanger. 2016. The British general election: Synthetic forecasts. Electoral Studies 41(Supplement C): 264–268.CrossRefGoogle Scholar
  35. Linzer, Drew A. 2013. Dynamic Bayesian forecasting of presidential elections in the states. Journal of the American Statistical Association 108(501): 124–134.CrossRefGoogle Scholar
  36. Martin, Andrew D., Kevin M. Quinn, Theodore W. Ruger, und Pauline T. Kim. 2004. Competing approaches to predicting supreme court decision making. Perspectives on Politics 2(4): 761–767.CrossRefGoogle Scholar
  37. Mayer, William G. 2014. What, if anything, have we learned from presidential election forecasting? PS: Political Science & Politics 47(2): 329–331.Google Scholar
  38. Meirowitz, Adam, und Joshua A. Tucker. 2004. Learning from terrorism markets. Perspectives on Politics 2(2): 331–336.CrossRefGoogle Scholar
  39. Munzert, Simon, Lukas Stötzer, Thomas Gschwend, Marcel Neunhoeffer, und Sebastian Sternberg. 2017. Zweitstimme.org. Ein strukturell-dynamisches Vorhersagemodell für Bundestagswahlen. Politische Vierteljahresschrift 58(3): 418–441.CrossRefGoogle Scholar
  40. Murr, Andreas Erwin. 2011. ‚Wisdom of crowds‘? A decentralised election forecasting model that uses citizens’ local expectations. Electoral Studies 30(4): 771–783.CrossRefGoogle Scholar
  41. Norpoth, Helmut. 2016. Primary model predicts trump victor. PS: Political Science & Politics 49(4): 655–658.Google Scholar
  42. Norpoth, Helmut, und Thomas Gschwend. 2014. A near miss for the chancellor model. EUSA: EU Political Economy Bulletin 17:4–8.Google Scholar
  43. Nurmi, Hannu. 2002. Voting procedures under uncertainty. Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  44. O’Brien, Sean P. 2010. Crisis early warning and decision support: Contemporary approaches and thoughts on future research. International Studies Review 12(1): 87–104.CrossRefGoogle Scholar
  45. Peterson, Jack, Joseph Krug, Micah Zoltu, Austin K. Williams, und Stephanie Alexander. 2015. Augur: A decentralized oracle and prediction market platform. arXiv:1501.01042 [cs]. Zugegriffen am 05.03.2018.Google Scholar
  46. Sanders, David. 1996. Economic performance, management competence and the outcome of the next general election. Political Studies 44(2): 203–231.CrossRefGoogle Scholar
  47. Schrodt, Philip A. 2013. Seven deadly sins of contemporary quantitative political analysis. Journal of Peace Research 51:287–300.CrossRefGoogle Scholar
  48. Selb, Peter, und Simon Munzert. 2015. Forecasting the 2013 German bundestag election using many polls and historical election results. German Politics 25(1): 73–83.CrossRefGoogle Scholar
  49. Silver, Nate. 2016. A user’s guide to FiveThirtyEight’s 2016 general election forecast. FiveThirtyEight. https://fivethirtyeight.com/features/a-users-guide-to-fivethirtyeights-2016-general-election-forecast/. Zugegriffen am 21.12.2017.
  50. Sternberg, Sebastian. 2017. How to forecast constitutional court decisions? Legal context and political context in a machine learning framework. Working paper.Google Scholar
  51. Ward, Michael D., Brian D. Greenhill, und Kristin M. Bakke. 2010. The perils of policy by p-value: Predicting civil conflicts. Journal of Peace Research 47(4): 363–375.CrossRefGoogle Scholar
  52. Wolfers, Justin, und Eric Zitzewitz. 2004. Prediction markets. Journal of Economic Perspectives 18(2): 107–126.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Otto Suhr Institute of Political ScienceFreie Universität BerlinBerlinDeutschland

Personalised recommendations