Encyclopedia of Robotics

Living Edition
| Editors: Marcelo H Ang, Oussama Khatib, Bruno Siciliano

Multiple Unmanned Aerial Manipulator Systems, Coordinated Control of

  • Fabrizio CaccavaleEmail author
  • Francesco Pierri
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-41610-1_81-1
  • 80 Downloads

Synonyms

Definition

Multiple unmanned aerial manipulator systems (UAMS) are teams composed by aerial vehicles equipped by robotic manipulators to execute complex manipulation tasks or transportation of heavy/large payloads. The coordinated control of such systems is aimed at achieving proper motion coordination among the aerial manipulators in the team, so as to guarantee the execution of a given task, defined at the team level.

Overview

Multi-robot systems have been increasingly used in many fields, due to their flexibility and capacity to execute complex tasks; e.g., multiple cooperative manipulators are used to achieve higher flexibility and payload capacity of industrial robotic workcells (Caccavale and Uchiyama, 2016), while multiple mobile robots are being increasingly considered for collaborative surveillance, remote monitoring, and cooperative rescue missions.

Among mobile robotic systems, unmanned aerial...

This is a preview of subscription content, log in to check access.

References

  1. Antonelli G, Arrichiello F, Chiaverini S (2010) The NSB control: a behavior-based approach for multi-robot systems. Paladyn J Behav Robot 1(1):48–56Google Scholar
  2. Antonelli G, Cataldi E, Giordano PR, Chiaverini S, Franchi A (2013) Experimental validation of a new adaptive control scheme for quadrotors MAVs. In: 2013 IEEE/RSJ International Conference on intelligent robots and systems (IROS). IEEE, pp 2439–2444Google Scholar
  3. Antonelli G, Baizid K, Caccavale F, Giglio G, Pierri F (2014) Cavis: a control software architecture for cooperative multi-unmanned aerial vehicle-manipulator systems. IFAC Proc Vol 47(3):1108–1113CrossRefGoogle Scholar
  4. Antonelli G, Cataldi E, Arrichiello F, Giordano PR, Chiaverini S, Franchi A (2018) Adaptive trajectory tracking for quadrotor MAVs in presence of parameter uncertainties and external disturbances. IEEE Trans Control Syst Technol 26(1):248–254CrossRefGoogle Scholar
  5. ARCAS (2011-15) aerial robotics cooperative assembly system. http://www.arcas-project.eu
  6. Baizid K, Giglio G, Pierri F, Trujillo MA, Antonelli G, Caccavale F, Viguria A, Chiaverini S, Ollero A (2017) Behavioral control of unmanned aerial vehicle manipulator systems. Auton Robots 41(5):1203–1220CrossRefGoogle Scholar
  7. Brandao AS, Barbosa JP, Mendoza V, Sarcinelli-Filho M, Carelli R (2014) A multi-layer control scheme for a centralized UAV formation. In: 2014 international conference on, Unmanned aircraft systems (ICUAS). IEEE, pp 1181–1187Google Scholar
  8. Caccavale F, Uchiyama M (2016) Cooperative manipulators. In: Handbook of robotics. Springer International Publishing, Cham, pp 989–1006CrossRefGoogle Scholar
  9. Caccavale F, Giglio G, Muscio G, Pierri F (2015) Cooperative impedance control for multiple UAVs with a robotic arm. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 2366–2371Google Scholar
  10. Cataldi E, Muscio G, Trujillo MA, Rodríguez Y, Pierri F, Antonelli G, Caccavale F, Viguria A, Chiaverini S, Ollero A (2016) Impedance control of an aerial-manipulator: preliminary results. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 3848–3853Google Scholar
  11. Dahl O, Nielsen L (1990) Torque-limited path following by online trajectory time scaling. IEEE Trans Robot Autom 6(5):554–561CrossRefGoogle Scholar
  12. Fink J, Michael N, Kim S, Kumar V (2011) Planning and control for cooperative manipulation and transportation with aerial robots. Int J Robot Res 30:324–334CrossRefGoogle Scholar
  13. Gancet J, Hattenberger G, Alami R, Lacroix S (2005) Task planning and control for a multi-UAV system: architecture and algorithms. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005. (IROS 2005). IEEE, pp 1017–1022Google Scholar
  14. Lee H, Kim H, Kim W, Kim HJ (2018) An integrated framework for cooperative aerial manipulators in unknown environments. IEEE Robot Autom Lett 3(3):2307–2314CrossRefGoogle Scholar
  15. Mansard N, Chaumette F (2007) Task sequencing for high-level sensor-based control. IEEE Trans Robot 23(1):60–72CrossRefGoogle Scholar
  16. Maza I, Kondak K, Bernard M, Ollero A (2010) Multi-UAV cooperation and control for load transportation and deployment. J Intell Robot Syst 57:417–449CrossRefGoogle Scholar
  17. Mellinger D, Shomin M, Michael N, Kumar V (2013) Cooperative grasping and transport using multiple quadrotors. In: Martinoli A et al (eds) Distributed autonomous robotic systems. Springer, Berlin/ Heidelberg, pp 545–558CrossRefGoogle Scholar
  18. Michael N, Fink J, Kumar V (2011) Cooperative manipulation and transportation with aerial robots. Auton Robots 30(1):73–86CrossRefGoogle Scholar
  19. Moe S, Antonelli G, Teel AR, Pettersen KY, Schrimpf J (2016) Set-based tasks within the singularity-robust multiple task-priority inverse kinematics framework: general formulation, stability analysis, and experimental results. Front Robot AI 3:16CrossRefGoogle Scholar
  20. Muscio G, Pierri F, Trujillo MA, Cataldi E, Giglio G, Antonelli G, Caccavale F, Viguria A, Chiaverini S, Ollero A (2016) Experiments on coordinated motion of aerial robotic manipulators. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1224–1229Google Scholar
  21. Muscio G, Pierri F, Trujillo MA, Cataldi E, Antonelli G, Caccavale F, Viguria A, Chiaverini S, Ollero A (2018) Coordinated control of aerial robotic manipulators: theory and experiments. IEEE Trans Control Syst Technol 26(4):1406–1413CrossRefGoogle Scholar
  22. Ollero A, Heredia G, Franchi A, Antonelli G, Kondak K, Sanfeliu A, Viguria A, Martinez-De Dios JR, Pierri F, Cortés J, et al (2018) The AEROARMS project: aerial robots with advanced manipulation capabilities for inspection and maintenance. IEEE Robot Autom Mag 25:12–23CrossRefGoogle Scholar
  23. Pierri F, Muscio G, Caccavale F (2018) An adaptive hierarchical control for aerial manipulators. Robotica 36(10):1527–1550CrossRefGoogle Scholar
  24. Ryll M, Muscio G, Pierri F, Cataldi E, Antonelli G, Caccavale F, Franchi A (2017) 6d physical interaction with a fully actuated aerial robot. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5190–5195Google Scholar
  25. Tagliabue A, Kamel M, Verling S, Siegwart R, Nieto J (2017) Collaborative transportation using MAVs via passive force control. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5766–5773Google Scholar
  26. Yang H, Lee D (2015) Hierarchical cooperative control framework of multiple quadrotor-manipulator systems. In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE, pp 4656–4662Google Scholar
  27. Zhu WH (2010) Virtual decomposition control: toward hyper degrees of freedom robots, vol 60. Springer-Verlag, Berlin, HeidelbergCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of EngineeringUniversity of BasilicataPotenzaItaly

Section editors and affiliations

  • Aníbal Ollero
    • 1
  1. 1.GRVC Robotics Labs. SevillaEscuela Técnica Superior de Ingeniería, Universidad de SevillaSevillaSpain