Encyclopedia of Robotics

Living Edition
| Editors: Marcelo H. Ang, Oussama Khatib, Bruno Siciliano

Visual Simultaneous Localization and Mapping

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-41610-1_72-1
  • 255 Downloads

Synonyms

Definition

Simultaneous Localization And Mapping (SLAM) is the process of estimating the egomotion of a body (e.g., a robot) in real-time, as well as its previously unknown surroundings. For this process, only feeds from onboard sensors are used, while all computation is also typically performed onboard. Vision-based SLAM refers to SLAM techniques employing visual cues (e.g., the video stream from a traditional camera) as the main source of exteroceptive sensing.

Overview

Inspired by the key role of human vision in our spatial (and higher-level) reasoning for navigation, research in vision-based robotic perception aims to leverage the wealth of visual information in a bid to develop the autonomy of robots. Taking inspiration from a variety of disciplines such as machine learning, neuroscience, and computer vision, roboticists have long been aiming to automate the navigation of mobile robots, with...

This is a preview of subscription content, log in to check access.

References

  1. Agarwal S, Snavely N, Simon I, Seitz SM, Szeliski R (2009) Building Rome in a day. In: Proceedings of the international conference on computer vision (ICCV)Google Scholar
  2. Bloesch M, Weiss S, Scaramuzza D, Siegwart R (2010) Vision-based MAV navigation in unknown and unstructured environments. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)Google Scholar
  3. Bloesch M, Omari S, Hutter M, Siegwart R (2015) Robust visual inertial odometry using a direct EKF-based approach. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems (IROS)Google Scholar
  4. Brown DC (1958) A solution to the general problem of multiple station analytical stereo triangulation. D. Brown Associates, IncorporatedGoogle Scholar
  5. Broxton MJ, Nefian AV, Moratto Z, Kim T, Lundy M, Segal AV (2009) 3D lunar terrain reconstruction from Apollo images. In: International symposium on visual computingCrossRefGoogle Scholar
  6. Chli M (2010) Applying information theory to efficient SLAM. PhD thesis, Imperial College LondonGoogle Scholar
  7. Chli M, Davison AJ (2009) Automatically and efficiently inferring the hierarchical structure of visual maps. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)Google Scholar
  8. Davison AJ (2003) Real-time simultaneous localisation and mapping with a single camera. In: Proceedings of the international conference on computer vision (ICCV)Google Scholar
  9. Davison AJ, Molton ND, Reid I, Stasse O (2007) MonoSLAM: real-time single camera SLAM. IEEE Trans Pattern Anal Mach Intell (PAMI) 29(6): 1052–1067CrossRefGoogle Scholar
  10. Engel J, Schöps T, Cremers D (2014) LSD-SLAM: large-scale direct monocular SLAM. In: Proceedings of the European conference on computer vision (ECCV)Google Scholar
  11. Engel J, Koltun V, Cremers D (2018) Direct sparse odometry. IEEE Trans Pattern Anal Mach Intell (PAMI)Google Scholar
  12. Forster C, Zhang Z, Gassner M, Werlberger M, Scaramuzza D (2016) SVO: semidirect visual odometry for monocular and multicamera systems. IEEE Trans Robot (T-RO) 33 (2): 249–265CrossRefGoogle Scholar
  13. Karrer M, Schmuck P, Chli M (2018) CVI-SLAM – collaborative visual-inertial SLAM. IEEE Robot Autom Lett (RAL) 3 (4): 2762–2769CrossRefGoogle Scholar
  14. Klein G, Murray DW (2007) Parallel tracking and mapping for small AR workspaces. In: Proceedings of the international symposium on mixed and augmented reality (ISMAR)Google Scholar
  15. Leonard JJ, Durrant-Whyte HF (1991) Simultaneous map building and localization for an autonomous mobile robot. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems (IROS)Google Scholar
  16. Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P (2015) Keyframe-based visual-inertial odometry using nonlinear optimization. Int J Robot Res (IJRR) 314 (3): 314–334CrossRefGoogle Scholar
  17. Li R, Hwangbo J, Chen Y, Di K (2011) Rigorous photogrammetric processing of HiRISE stereo imagery for Mars topographic mapping. IEEE Trans Geosci Remote Sens 49 (7): 2558–2572CrossRefGoogle Scholar
  18. Maffra F, Teixeira L, Chen Z, Chli M (2019) Real-time wide-baseline place recognition using depth completion. IEEE Robot Autom Lett (RAL) 4 (2): 1525–1532CrossRefGoogle Scholar
  19. Mourikis AI, Roumeliotis SI (2007) A multi-state Kalman filter for vision-aided inertial navigation. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)Google Scholar
  20. Mur-Artal R, Tardós JD (2017) Visual-inertial monocular SLAM with map reuse. IEEE Robot Autom Lett (RAL) 2 (2): 796–803CrossRefGoogle Scholar
  21. Mur-Artal R, Montiel JMM, Tardós JD (2015) ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans Robot (T-RO) 31 (5): 1147–1163CrossRefGoogle Scholar
  22. Newcombe RA, Lovegrove SL, Davison AJ (2011) DTAM: dense tracking and mapping in real-time. In: Proceedings of the international conference on computer vision (ICCV)Google Scholar
  23. Qin T, Li P, Shen S (2018) VINS-Mono: a Robust and versatile monocular visual-inertial state estimator. IEEE Trans Robot (T-RO) 34 (4): 1004–1020CrossRefGoogle Scholar
  24. Schmuck P, Chli M (2018) CCM-SLAM: robust and efficient centralized collaborative monocular SLAM for robotic teams. J Field Robot (JFR).  https://doi.org/10.1002/rob.21854
  25. Shen S, Michael N, Kumar V (2011) Autonomous multi-floor indoor navigation with a computationally constrained MAV. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)Google Scholar
  26. Smith R, Self M, Cheeseman P (1988) Estimating uncertain spatial relationships in robotics. In: Uncertainty in artificial intelligence. Elsevier, pp 435–461zbMATHGoogle Scholar
  27. Strasdat H, Montiel JMM, Davison AJ (2010) Real-time monocular SLAM: why filter? In: Proceedings of the IEEE international conference on robotics and automation (ICRA)Google Scholar
  28. Teixeira L, Chli M (2017) Real-time local 3D reconstruction for aerial inspection using superpixel expansion. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)Google Scholar
  29. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, CambridgezbMATHGoogle Scholar
  30. Vicon (2001) Vicon web based literature. http://www.metrics.co.uk
  31. Weiss S, Achtelik MW, Lynen S, Achtelik MC, Kneip L, Chli M, Siegwart R (2013) Monocular vision for long-term MAV navigation: a compendium. J Field Robot (JFR) 30: 803–831.  https://doi.org/10.1002/rob.21466 CrossRefGoogle Scholar
  32. Yang G-Z, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson BJ, Scassellati B, Taddeo M, Taylor R, Veloso M, Wang ZL, Wood R (2018) The grand challenges of Science Robotics. Sci Robot 3 (14).  https://doi.org/10.1126/scirobotics.aar7650

Authors and Affiliations

  1. 1.Vision for Robotics LabETH ZurichZurichSwitzerland

Section editors and affiliations

  • Aníbal Ollero
    • 1
  1. 1.GRVC Robotics Labs. SevillaEscuela Técnica Superior de Ingeniería, Universidad de SevillaSevillaSpain