Skip to main content

Solar-Powered Unmanned Aerial Vehicles

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackerman E (2013) Giant solar-powered UAVs are atmospheric satellites. IEEE spectrum. http://spectrum. ieee.org/automaton/robotics/aerial-robots/giant-solar- powered-uavs-are-atmospheric-satellites

  • AeroVironment (2013) AeroVironment solar-powered puma AE small unmanned aircraft achieves continuous flight for more than nine hours. Press release. http://www.avinc.com/resources/press_release/aeroviro nment-solar-powered-puma-ae-small-unmanned-aircraft- achieves-contin

  • Boucher RJ (1984) History of solar flight. In: AIAA/SAE/ASME 20th Joint Propulsion Conference

    Google Scholar 

  • Brandt SA, Gilliam FT (1995) Design analysis methodology for solar-powered aircraft. J Aircr 32(4):703–709

    Article  Google Scholar 

  • British Broadcasting Corporation (BBC) (2016) Solar impulse lands in California after pacific crossing. http:// www.bbc.com/news/science-environment-36122618. Retrieved 10 Dec 2017

  • ByeAerospace (2015) Industry first: solar-electric silent falcon prepares for initial customer orders. Press release. http://www.byeaerospace.com/news/2016/3/2/ industry-first-solar-electric-silent-falcon-prepares-for- initial-customer-orders

  • Chakrabarty A, Langelaan J (2013) UAV flight path planning in time varying complex wind-fields. In: American Control Conference (ACC)

    Google Scholar 

  • Cocconi A (2005) AC propulsion’s solar electric powered SoLong UAV. Technical Report, AC propulsion. Retrieved from https://archive.org/details/ACPropulsionSolongUAV2005

    Google Scholar 

  • Colella N, Wenneker G (1996) Pathfinder: developing a solar rechargeable aircraft. IEEE Potentials 15(1):18–23

    Article  Google Scholar 

  • Dai R (2013) Path planning of solar-powered unmanned aerial vehicles at low altitude. In: Circuits and Systems (MWSCAS), 2013 IEEE 56th international midwest symposium on, IEEE, pp 693–696

    Google Scholar 

  • D’Sa R, Jenson D, Henderson T, Kilian J, Schulz B, Calvert M, Heller T, Papanikolopoulos N (2016) SUAV:Q – an improved design for a transformable solar-powered UAV. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ international conference on, IEEE, pp 1609–1615

    Google Scholar 

  • Federation Aeronautique Internationale (2010) QinetiQ Hale Team (GBR) record. Official record. www.fai.org/record/qinetiq-hale-team-gbr-16052

  • Flittie K, Curtin B (1998) Pathfinder solar-powered aircraft flight performance. In: 23rd Atmospheric Flight Mechanics Conference

    Google Scholar 

  • Frulla G (2004) Aeroelastic behaviour of a solar-powered high-altitude long endurance unmanned air vehicle (HALE-UAV) slender wing. In: Proceedings of the Institution of Mechanical Engineers, part G. J Aerosp Eng 218(3):179–188

    Google Scholar 

  • Herwitz S, Johnson L, Dunagan S, Higgins R, Sullivan D, Zheng J, Lobitz B, Leung J, Gallmeyer B, Aoyagi M, et al (2004) Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput Electron Agric 44(1):49–61

    Article  Google Scholar 

  • Hosseini S, Dai R, Mesbahi M (2013) Optimal path planning and power allocation for a long endurance solar-powered UAV. In: American Control Conference (ACC), IEEE, pp 2588–2593

    Google Scholar 

  • How JP (2014) UAV control. In: Valavanis KP, Vachtsevanos GJ (eds) Handbook of Unmanned Aerial Vehicles, chap 26–30. Springer Publishing Company, Incorporated., pp 527–710

    Google Scholar 

  • Klesh A, Kabamba P (2007) Energy-optimal path planning for solar-powered aircraft in level flight. In: AIAA guidance, Navigation and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics

    Book  Google Scholar 

  • Klesh AT, Kabamba PT (2009) Solar-powered aircraft: energy-optimal path planning and perpetual endurance. J Guid Control Dyn 32:1320–1329

    Article  Google Scholar 

  • Kucinski W (2018) Airbus Zephyr S breaks world flight endurance record during maiden flight. SAE international. https://www.sae.org/news/2018/08/airbus- zephyr-s-breaks-world-flight-endurance-record-during- maiden-flight

  • Leutenegger S, Jabas M, Siegwart R (2010) Solar airplane conceptual design and performance estimation. J Intell Robot Syst 61:545–561

    Article  Google Scholar 

  • Malaver AJR, Gonzalez LF, Motta N, Villa TF (2015) Design and flight testing of an integrated solar powered UAV and WSN for remote gas sensing. In: IEEE Aerospace Conference

    Google Scholar 

  • Mardanpour P, Hodges DH (2015) On the importance of nonlinear aeroelasticity and energy efficiency in design of flying wing aircraft. Adv Aerosp Eng 2015:1–11

    Article  Google Scholar 

  • Morton S, Papanikolopoulos N (2016) Two meter solar UAV: design approach and performance prediction for autonomous sensing applications. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ international conference on. IEEE, pp 1695–1701

    Google Scholar 

  • Morton S, Scharber L, Papanikolopoulos N (2013) Solar powered unmanned aerial vehicle for continuous flight: conceptual overview and optimization. In: IEEE International Conference on Robotics and Automation (ICRA)

    Google Scholar 

  • Morton S, D’Sa R, Papanikolopoulos N (2015) Solar powered UAV: design and experiments. In: IEEE International Conference on Intelligent Robots and Systems (IROS)

    Google Scholar 

  • National Renewable Energy Laboratory (2016) Best research-cell efficiencies. Retrieved from http://www.nrel.gov/pv/ on 10 Apr 2018

  • Nickol C, Guynn M, Kohout L, Ozoroski T (2007) High altitude long endurance UAV analysis of alternatives and technology requirements development. Technical report, NASA/TP-2007-214861

    Google Scholar 

  • Noll TE, Brown JM, Perez-Davis ME, Ishmael SD, Tiffany GC, Gaier M (2004) Investigation of the Helios prototype aircraft mishap. Volume I: mishap report. Technical report, National Aeronautics and Space Administration (NASA)

    Google Scholar 

  • Noth A (2008a) Design of solar powered airplanes for continuous flight. Ph.D. thesis, ETH Zurich

    Google Scholar 

  • Noth A (2008b) History of solar flight. Autonomous systems lab, ETH Zurich. http://www.sky-sailor.ethz.ch/docs/HistoryofSolarFlightv2.0-A.Noth2008.pdf

    Google Scholar 

  • Oettershagen P, Melzer A, Mantel T, Rudin K, Stastny T, Wawrzacz B, Hinzmann T, Leutenegger S, Alexis K, Siegwart R (2017) Design of small hand-launched solar-powered UAVs: from concept study to a multi-day world endurance record flight. J Field Robot (JFR) 34(7):1352–1377

    Article  Google Scholar 

  • Oettershagen P, Förster J, Wirth L, Ambühl J, Siegwart R (2018a) Meteorology-aware multi-Goal path planning for large-scale inspection missions with solar-powered aircraft. J Aerosp Inf Syst. https://doi.org/10.2514/1.I010635

  • Oettershagen P, Stastny T, Hinzmann T, Rudin K, Mantel T, Melzer A, Wawrzacz B, Hitz G, Siegwart R (2018b) Robotic technologies for solar-powered UAVs: fully-autonomous updraft-aware aerial sensing for multi-Day search-and-rescue missions. J Field Robot (JFR)

    Google Scholar 

  • Osborne T (2016) U.K. will buy two Zephyr 8 UAVs. Aviationweek aerospace daily. http://aviationweek.com/awindefense/uk-will-buy-two-zephyr-8-uavs

  • Patil MJ, Hodges DH, Cesnik CE (2001) Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. J Aircr 38(1):88–94

    Article  Google Scholar 

  • Romeo G, Frulla G, Cestino E (2007) Design of a high-altitude long-endurance solar-powered unmanned air vehicle for multi-payload and operations. In: Proceedings of the Institution of Mechanical Engineers, part G: J Aerosp Eng 221(2):199–216

    Google Scholar 

  • Ross H (2008) Fly around the world with a solar powered airplane. In: The 26th congress of international council of the aeronautical sciences (ICAS), American Institute of Aeronautics and Astronautics

    Google Scholar 

  • Rubio JC, Kragelund S (2003) The trans-pacific crossing: long range adaptive path planning for UAVs through variable wind fields. In: Digital Avionics Systems Conference. DASC’03. The 22nd, IEEE, vol 2, pp 8–B

    Google Scholar 

  • Rubio JC, Vagners J, Rysdyk R (2004) Adaptive path planning for autonomous UAV oceanic search missions. In: AIAA 1st Intelligent Systems Technical Conference, pp 20–22

    Google Scholar 

  • Rudin K, Serrano D, Strupler P (2017) Unmanned aerial systems. In: Search and rescue robotics – from theory to practice, InTech, Rijeka, chap 03. https://doi.org/10.5772/intechopen.69490

    Google Scholar 

  • Runge H, Rack W, Ruiz-Leon A, Hepperle M (2007) A solar powered HALE-UAV for arctic research. In: 1st CEAS European air and space conference

    Google Scholar 

  • Shiau JK, Ma DM, Chiu CW (2010) Optimal sizing and cruise speed determination for a solar-powered airplane. J Aircr 47:622–629

    Article  Google Scholar 

  • Sion Power (2014) Sion power’s lithium-sulfur batteries power high altitude pseudo-satellite flight. Press release. http://sionpower.com/media-center.php?code=sion-powers-lithiumsulfur-batteries-power-high-alt

    Google Scholar 

  • Spangelo S, Gilbert E, Klesh A, Kabamba P, Girard A (2009) Periodic energy-optimal path planning for solar-powered aircraft. In: AIAA guidance, Navigation, and Control Conference, American Institute of Aeronautics and Astronautics

    Book  Google Scholar 

  • Tozer T, Grace D (2001) High-altitude platforms for wireless communications. Electron Commun Eng J 13(3):127–137

    Article  Google Scholar 

  • Weider A, Levy H, Regev I, Ankri L, Goldenberg T, Ehrlich Y, Vladimirsky A, Yosef Z, Cohen M (2007) SunSailor: solar powered UAV. Technical report, Aerospace engineering faculty, technion. http://webee. technion.ac.il/people/maxcohen/SunSailorArt19nov06. pdf

  • Zhu X, Guo Z, Hou Z (2014) Solar-powered airplanes: a historical perspective and future challenges. Prog Aerosp Sci 71:36–53

    Article  Google Scholar 

  • Zu CX, Li H (2011) Thermodynamic analysis on energy densities of batteries. Energy Environ Sci 4(8):2614. https://doi.org/10.1039/c0ee00777c

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Oettershagen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Oettershagen, P., Stastny, T., Siegwart, R. (2020). Solar-Powered Unmanned Aerial Vehicles. In: Ang, M., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_69-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics