Encyclopedia of Robotics

Living Edition
| Editors: Marcelo H. Ang, Oussama Khatib, Bruno Siciliano

Service-Oriented Computing in Robotic

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-41610-1_1-1
  • 223 Downloads

Abstract

In this entry, we present an overview on the use of service-oriented architecture and Web services in developing robotics applications and software integrated with the Internet and the Cloud. This is a recent trend that emerged since 2010 from the concept of cloud robotics, which leverages the use of cloud infrastructures for robotics applications following a service-oriented architecture approach. In particular, we distinguish two main categories: (i) virtualization of robotics systems and (ii) computation offloading from robots to cloud-based services. We discuss the main approaches proposed in the literature to design robotics systems through the Web and their integration to the cloud through service-oriented computing framework.

This is a preview of subscription content, log in to check access.

References

  1. Arumugam R, Enti VR, Bingbing L, Xiaojun W, Baskaran K, Kong FF, Kumar AS, Meng KD, Kit GW (2010) Davinci: a cloud computing framework for service robots. In: 2010 IEEE international conference on robotics and automation (ICRA), May 2010, pp 3084–3089Google Scholar
  2. Aws Robomaker (2019) Aws Robomaker: Amazon cloud robotics platform [Online]. Available: https://aws.amazon.com/robomaker/
  3. Bartels G, Beetz M, Bessler D, Tenorth M, Winkler J (2015) How to use openease: an online knowledge processing system for robots and robotics researchers (demonstration). In: Proceedings of the 2015 international conference on autonomous agents and multiagent systems, AAMAS’15. International Foundation for Autonomous Agents and Multiagent Systems, Richland, pp 1925–1926 [Online]. Available: http://dl.acm.org/citation.cfm?id=2772879.2773507
  4. Bekris K, Shome R, Krontiris A, Dobson A (2015) Cloud automation: precomputing roadmaps for flexible manipulation. IEEE Robot Autom Mag 22(2):41–50CrossRefGoogle Scholar
  5. Bingwei L, Yu C, Erik B, Khanh P, Dan S, Genshe C (2014) A holistic cloud-enabled robotics system for real-time video tracking application. In: Future information technology. Lecture notes in electrical engineering, vol 276. Springer, Berlin/Heidelberg, pp 455–468Google Scholar
  6. Brugali D, Da Fonseca A, Luzzana A, Maccarana Y (2014) Developing service oriented robot control system. In: 2014 IEEE 8th international symposium on service oriented system engineering (SOSE), Apr 2014, pp 237–242Google Scholar
  7. Chaari R, Ellouze F, Koubaa A, Qureshi B, Pereira N, Youssef H, Tovar E (2016) Cyber-physical systems clouds: a survey. Comput Netw 108:260–278 [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1389128616302699
  8. Crick C, Jay GT, Osentoski S, Pitzer B, Jenkins OC (2011) rosbridge: Ros for non-ros users. In: International symposium on robotics research (ISRR 2011), Flagstaff, Aug 2011Google Scholar
  9. Gharibi M, Boutaba R, Waslander SL (2016) Internet of drones. IEEE Access 4:1148–1162CrossRefGoogle Scholar
  10. Kehoe B, Patil S, Abbeel P, Goldberg K (2015) A survey of research on cloud robotics and automation. IEEE Trans Autom Sci Eng 12(2):398–409CrossRefGoogle Scholar
  11. Koubaa A (2014) A service-oriented architecture for virtualizing robots in robot-as-a-service clouds. In: Architecture of computing systems – ARCS 2014: 27th international conference, Lübeck, 25–28 Feb 2014. Proceedings. Springer International Publishing, Cham, pp 196–208 [Online]. Available: https://doi.org/10.1007/978-3-319-04891-8_17 CrossRefGoogle Scholar
  12. Koubaa A (2015) ROS as a service: web services for robot operating system. J Softw Eng Robot 6(1)Google Scholar
  13. Koubaa A, Qureshi B (2018) Dronetrack: cloud-based real-time object tracking using unmanned aerial vehicles. IEEE Access PP:1–1Google Scholar
  14. Koubaa A, Alajlan M, Qureshi B (2017a) ROSLink: bridging ROS with the internet-of-things for cloud robotics. In: Springer book of robot operating system (ROS), Vol 2, May 2017Google Scholar
  15. Koubaa A, Qureshi B, Sriti M-F, Javed Y, Tovar E (2017b) Dronemap planner: a service-oriented cloud-based management system for the internet-of-drones. In: The 17th international conference on autonomous robot systems and competitions (ICARSC 2017), Apr 2017Google Scholar
  16. Koubaa A, Qureshi B, Sriti M-F, Allouch A, Javed Y, Alajlan M, Cheikhrouhou O, Khalgui M, Tovar E (2019) Dronemap planner: a service-oriented cloud-based management system for the internet-of-drones. Ad Hoc Netw 86:46–62CrossRefGoogle Scholar
  17. Kuffner J (2010) Cloud-enabled robots. In: IEEE-RAS international conference on humanoid robots. IEEEGoogle Scholar
  18. Lei Y, Fengyu Z, Yugang W, Xianfeng Y, Yang Z, Zhumin C (2016) Design of a cloud robotics visual platform. In: 2016 sixth international conference on instrumentation measurement, computer, communication and control (IMCCC), July 2016, pp 1039–1043Google Scholar
  19. Mahmoud S, Mohamed N (2014) Collaborative UAVs cloud. In 2014 international conference on unmanned aircraft systems (ICUAS), May 2014, pp 365–373Google Scholar
  20. Mahmoud S, Mohamed N (2015) Broker architecture for collaborative UAVs cloud computing. In: 2015 international conference on collaboration technologies and systems (CTS), June 2015, pp 212–219Google Scholar
  21. MAVLINK (2019) The MAVLINK protocol, website: http://qgroundcontrol.org/mavlink/start
  22. Mohanarajah G, Usenko V, Singh M, Waibel M, D’Andrea R (2014) Cloud-based collaborative 3D mapping in real-time with low-cost robots. IEEE Trans Autom Sci Eng 12(2):481–493CrossRefGoogle Scholar
  23. Mohanarajah G, Hunziker D, D’Andrea R, Waibel M (2015) Rapyuta: a cloud robotics platform. IEEE Trans Autom Sci Eng 12(2):481–493CrossRefGoogle Scholar
  24. Osentoski S, Jay G, Crick C, Pitzer B, DuHadway C, Jenkins OC (2011) Robots as web services: reproducible experimentation and application development using rosjs. In: 2011 IEEE international conference on robotics and automation (ICRA)Google Scholar
  25. Pautasso C, Zimmermann O, Leymann F (2008) Restful web services vs. “big” web services: making the right architectural decision. In: Proceedings of the 17th international conference on world wide web. WWW’08. ACM, New York, pp 805–814 [Online]. Available: https://doi.org/10.1145/1367497.1367606
  26. Salmeron-Garcia J, Inigo-Blasco P, del Rio FD, Cagigas-Muniz D (2015) A tradeoff analysis of a cloud-based robot navigation assistant using stereo image processing. IEEE Trans Autom Sci Eng 12(2):444–454CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Prince Sultan UniversityRiyadhSaudi Arabia
  2. 2.CISTER Research Centre ISEPPolytechnic Institute of PortoPortoPortugal
  3. 3.Gaitech RoboticsShanghaiChina

Section editors and affiliations

  • Davide Brugali
    • 1
  1. 1.Department of Management Engineering, Computer Engineering, and Production EngineeringUniversity of BergamoDalmineItaly