Encyclopedia of Robotics

Living Edition
| Editors: Marcelo H. Ang, Oussama Khatib, Bruno Siciliano

Service-Oriented Computing in Robotic

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-41610-1_1-1


In this entry, we present an overview on the use of service-oriented architecture and Web services in developing robotics applications and software integrated with the Internet and the Cloud. This is a recent trend that emerged since 2010 from the concept of cloud robotics, which leverages the use of cloud infrastructures for robotics applications following a service-oriented architecture approach. In particular, we distinguish two main categories: (i) virtualization of robotics systems and (ii) computation offloading from robots to cloud-based services. We discuss the main approaches proposed in the literature to design robotics systems through the Web and their integration to the cloud through service-oriented computing framework.

This is a preview of subscription content, log in to check access.


  1. Arumugam R, Enti VR, Bingbing L, Xiaojun W, Baskaran K, Kong FF, Kumar AS, Meng KD, Kit GW (2010) Davinci: a cloud computing framework for service robots. In: 2010 IEEE international conference on robotics and automation (ICRA), May 2010, pp 3084–3089Google Scholar
  2. Aws Robomaker (2019) Aws Robomaker: Amazon cloud robotics platform [Online]. Available: https://aws.amazon.com/robomaker/
  3. Bartels G, Beetz M, Bessler D, Tenorth M, Winkler J (2015) How to use openease: an online knowledge processing system for robots and robotics researchers (demonstration). In: Proceedings of the 2015 international conference on autonomous agents and multiagent systems, AAMAS’15. International Foundation for Autonomous Agents and Multiagent Systems, Richland, pp 1925–1926 [Online]. Available: http://dl.acm.org/citation.cfm?id=2772879.2773507
  4. Bekris K, Shome R, Krontiris A, Dobson A (2015) Cloud automation: precomputing roadmaps for flexible manipulation. IEEE Robot Autom Mag 22(2):41–50CrossRefGoogle Scholar
  5. Bingwei L, Yu C, Erik B, Khanh P, Dan S, Genshe C (2014) A holistic cloud-enabled robotics system for real-time video tracking application. In: Future information technology. Lecture notes in electrical engineering, vol 276. Springer, Berlin/Heidelberg, pp 455–468Google Scholar
  6. Brugali D, Da Fonseca A, Luzzana A, Maccarana Y (2014) Developing service oriented robot control system. In: 2014 IEEE 8th international symposium on service oriented system engineering (SOSE), Apr 2014, pp 237–242Google Scholar
  7. Chaari R, Ellouze F, Koubaa A, Qureshi B, Pereira N, Youssef H, Tovar E (2016) Cyber-physical systems clouds: a survey. Comput Netw 108:260–278 [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1389128616302699
  8. Crick C, Jay GT, Osentoski S, Pitzer B, Jenkins OC (2011) rosbridge: Ros for non-ros users. In: International symposium on robotics research (ISRR 2011), Flagstaff, Aug 2011Google Scholar
  9. Gharibi M, Boutaba R, Waslander SL (2016) Internet of drones. IEEE Access 4:1148–1162CrossRefGoogle Scholar
  10. Kehoe B, Patil S, Abbeel P, Goldberg K (2015) A survey of research on cloud robotics and automation. IEEE Trans Autom Sci Eng 12(2):398–409CrossRefGoogle Scholar
  11. Koubaa A (2014) A service-oriented architecture for virtualizing robots in robot-as-a-service clouds. In: Architecture of computing systems – ARCS 2014: 27th international conference, Lübeck, 25–28 Feb 2014. Proceedings. Springer International Publishing, Cham, pp 196–208 [Online]. Available: https://doi.org/10.1007/978-3-319-04891-8_17 CrossRefGoogle Scholar
  12. Koubaa A (2015) ROS as a service: web services for robot operating system. J Softw Eng Robot 6(1)Google Scholar
  13. Koubaa A, Qureshi B (2018) Dronetrack: cloud-based real-time object tracking using unmanned aerial vehicles. IEEE Access PP:1–1Google Scholar
  14. Koubaa A, Alajlan M, Qureshi B (2017a) ROSLink: bridging ROS with the internet-of-things for cloud robotics. In: Springer book of robot operating system (ROS), Vol 2, May 2017Google Scholar
  15. Koubaa A, Qureshi B, Sriti M-F, Javed Y, Tovar E (2017b) Dronemap planner: a service-oriented cloud-based management system for the internet-of-drones. In: The 17th international conference on autonomous robot systems and competitions (ICARSC 2017), Apr 2017Google Scholar
  16. Koubaa A, Qureshi B, Sriti M-F, Allouch A, Javed Y, Alajlan M, Cheikhrouhou O, Khalgui M, Tovar E (2019) Dronemap planner: a service-oriented cloud-based management system for the internet-of-drones. Ad Hoc Netw 86:46–62CrossRefGoogle Scholar
  17. Kuffner J (2010) Cloud-enabled robots. In: IEEE-RAS international conference on humanoid robots. IEEEGoogle Scholar
  18. Lei Y, Fengyu Z, Yugang W, Xianfeng Y, Yang Z, Zhumin C (2016) Design of a cloud robotics visual platform. In: 2016 sixth international conference on instrumentation measurement, computer, communication and control (IMCCC), July 2016, pp 1039–1043Google Scholar
  19. Mahmoud S, Mohamed N (2014) Collaborative UAVs cloud. In 2014 international conference on unmanned aircraft systems (ICUAS), May 2014, pp 365–373Google Scholar
  20. Mahmoud S, Mohamed N (2015) Broker architecture for collaborative UAVs cloud computing. In: 2015 international conference on collaboration technologies and systems (CTS), June 2015, pp 212–219Google Scholar
  21. MAVLINK (2019) The MAVLINK protocol, website: http://qgroundcontrol.org/mavlink/start
  22. Mohanarajah G, Usenko V, Singh M, Waibel M, D’Andrea R (2014) Cloud-based collaborative 3D mapping in real-time with low-cost robots. IEEE Trans Autom Sci Eng 12(2):481–493CrossRefGoogle Scholar
  23. Mohanarajah G, Hunziker D, D’Andrea R, Waibel M (2015) Rapyuta: a cloud robotics platform. IEEE Trans Autom Sci Eng 12(2):481–493CrossRefGoogle Scholar
  24. Osentoski S, Jay G, Crick C, Pitzer B, DuHadway C, Jenkins OC (2011) Robots as web services: reproducible experimentation and application development using rosjs. In: 2011 IEEE international conference on robotics and automation (ICRA)Google Scholar
  25. Pautasso C, Zimmermann O, Leymann F (2008) Restful web services vs. “big” web services: making the right architectural decision. In: Proceedings of the 17th international conference on world wide web. WWW’08. ACM, New York, pp 805–814 [Online]. Available: https://doi.org/10.1145/1367497.1367606
  26. Salmeron-Garcia J, Inigo-Blasco P, del Rio FD, Cagigas-Muniz D (2015) A tradeoff analysis of a cloud-based robot navigation assistant using stereo image processing. IEEE Trans Autom Sci Eng 12(2):444–454CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Prince Sultan UniversityRiyadhSaudi Arabia
  2. 2.CISTER Research Centre ISEPPolytechnic Institute of PortoPortoPortugal
  3. 3.Gaitech RoboticsShanghaiChina

Section editors and affiliations

  • Davide Brugali
    • 1
  1. 1.Department of Management Engineering, Computer Engineering, and Production EngineeringUniversity of BergamoDalmineItaly