Advertisement

Hydrological Predictability, Scales, and Uncertainty Issues

  • Joshua K. RoundyEmail author
  • Qingyun Duan
  • John Schaake
Living reference work entry

Abstract

The survival and well-being of human civilization depends on water. Human civilization is especially vulnerable to large variations in the water cycle such as flood and drought that disrupts food supplies and can cause havoc to day-to-day operations. Many of these extreme events have occurred in recent years including large droughts and extreme floods in many parts of the world. The looming threat of climate change has the additional potential to make the impacts of extreme water cycle events an even greater threat to society. The ability to have foreknowledge of these extremes in the water cycle can provide time for preparations to reduce the negative impacts of these extremes on society. Predictions of these extreme events require models of the hydrometeorological system, including all its associated uncertainties, and appropriate observations systems to provide input data to these models. Ensemble forecasts using statistical and physically based models that also account for forecast uncertainties have great potential to make the needed predictions of future hydrometeorological events.

This chapter discusses the basis for predictability, predictive scales, and uncertainty associated with hydrometeorological prediction. Although much uncertainty may be associated with some hydrometeorological predictions, ensemble forecasting techniques offer a way to quantify this uncertainty making it possible to have more useful predictions for decision makers and for the ultimate benefit to society.

Keywords

Predictability Uncertainty GCM ESP Spatial scales Temporal scales 

References

  1. M. Cornick, B. Hunt, E. Ott, H. Kurtuldu, M.F. Schatz, State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh–Bénard convection. Chaos. Interdiscip. J. Nonlinear. Sci. 19, 13108 (2009).  https://doi.org/10.1063/1.3072780CrossRefGoogle Scholar
  2. G.N. Day, Extended streamflow forecasting using NWSRFS. J. Water Resour. Plan. Manag. 111, 157–170 (1985)CrossRefGoogle Scholar
  3. A.P.J. de Roo, B. Gouweleeuw, J. Thielen, J. Bartholmes, P. Bongioannini-Cerlini, E. Todini, P.D. Bates, M. Horritt, N. Hunter, K. Beven, F. Pappenberger, E. Heise, G. Rivin, M. Hils, A. Hollingsworth, B. Holst, J. Kwadijk, P. Reggiani, M. Van Dijk, K. Sattler, E. Sprokkereef, Development of a European flood forecasting system. Int. J. River Basin Manag. 1, 49–59 (2003).  https://doi.org/10.1080/15715124.2003.9635192CrossRefGoogle Scholar
  4. E.S. Epstein, Stochastic dynamic prediction. Tellus 21, 739–759 (1969).  https://doi.org/10.1111/j.2153-3490.1969.tb00483.xCrossRefGoogle Scholar
  5. G. Evensen, The ensemble Kalman filter for combined state and parameter estimation. IEEE Control. Syst. Mag. 29, 83–104 (2009).  https://doi.org/10.1109/MCS.2009.932223CrossRefGoogle Scholar
  6. L.S.R. Froude, L. Bengtsson, K.I. Hodges, Atmospheric predictability revisited. Tellus Ser. A Dyn. Meteorol. Oceanogr. 65, 19022 (2013).  https://doi.org/10.3402/tellusa.v65i0.19022CrossRefGoogle Scholar
  7. L. Goddard, S.J. Mason, S.E. Zebiak, C.F. Ropelewski, R. Basher, M.A. Cane, Current approaches to seasonal to interannual climate predictions. Int. J. Climatol. 21, 1111–1152 (2001).  https://doi.org/10.1002/joc.636CrossRefGoogle Scholar
  8. TM. Hamill, Comments on “Calibrated Surface Temperature Forecasts from the Canadian Ensemble Prediction System Using Bayesian Model Averaging.” Mon. Weather. Rev. 135, 4226–4230 (2007).CrossRefGoogle Scholar
  9. A. Hamlet, D. Lettenmaier, Columbia River streamflow forecasting based on ENSO and PDO climate signals. J. Water Resour. Plan. Manag. 125, 333–341 (1999).  https://doi.org/10.1061/(ASCE)0733-9496(1999)125:6(333)CrossRefGoogle Scholar
  10. B. Hoskins, The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Q. J. R. Meteorol. Soc. 139, 573–584 (2013).CrossRefGoogle Scholar
  11. T.G. Huntington, Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 319, 83–95 (2006).  https://doi.org/10.1016/j.jhydrol.2005.07.003CrossRefGoogle Scholar
  12. T.R. Karl, B.E. Gleason, M.J. Menne, J.R. McMahon, R.R. Heim, M.J. Brewer, K.E. Kunkel, D.S. Arndt, J.L. Privette, J.J. Bates, P.Y. Groisman, D.R. Easterling, U.S. temperature and drought: Recent anomalies and trends. Eos. Trans. Am. Geophys. Union 93, 473–474 (2012).  https://doi.org/10.1029/2012EO470001CrossRefGoogle Scholar
  13. R. Krzysztofowicz, Why should a forecaster and a decision maker use Bayes theorem. Water Resour. Res. 19, 327–336 (1983).  https://doi.org/10.1029/WR019i002p00327CrossRefGoogle Scholar
  14. R. Krzysztofowicz, The case for probabilistic forecasting in hydrology. J. Hydrol. 249, 2–9 (2001).  https://doi.org/10.1016/S0022-1694(01)00420-6CrossRefGoogle Scholar
  15. C.E. Leith, Theoretical skill of Monte Carlo forecasts. Mon. Weather Rev. 102, 409–418 (1974).  https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2CrossRefGoogle Scholar
  16. C.E. Leith, R.H. Kraichnan, Predictability of Turbulent Flows. J. Atmos. Sci. 29, 1041–1058 (1972).CrossRefGoogle Scholar
  17. H.B. Li, L.F. Luo, E.F. Wood, J. Schaake, The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting. J. Geophys. Res. (2009).  https://doi.org/10.1029/2008jd010969
  18. E.N. Lorenz, A study of the predictability of a 28-variable atmospheric model. Tellus 17, 321–333 (1965).  https://doi.org/10.1111/j.2153-3490.1965.tb01424.xCrossRefGoogle Scholar
  19. E.N. Lorenz, Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 26, 636–646 (1969).  https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2CrossRefGoogle Scholar
  20. E.N. Lorenz, Atmospheric predictability experiments with a large numerical model. Tellus 34, 505–513 (1982).  https://doi.org/10.1111/j.2153-3490.1982.tb01839.xCrossRefGoogle Scholar
  21. L. Marchi, M. Borga, E. Preciso, E. Gaume, Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 394, 118–133 (2010).  https://doi.org/10.1016/j.jhydrol.2010.07.017CrossRefGoogle Scholar
  22. Merriam-Webster Prediction, In: Merriam-Webster.com. http://www.merriam-webster.com/dictionary/canonicalform
  23. K.C. Mo, S. Shukla, D.P. Lettenmaier, L.-C. Chen, Do climate forecast system (CFSv2) forecasts improve seasonal soil moisture prediction? Geophys. Res. Lett. 39, L23703 (2012).  https://doi.org/10.1029/2012GL053598CrossRefGoogle Scholar
  24. F. Molteni, R. Buizza, T.N. Palmer, T. Petroliagis, The ECMWF ensemble prediction system: methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119 (1996).  https://doi.org/10.1002/qj.49712252905CrossRefGoogle Scholar
  25. T.N. Palmer, D.L.T. Anderson, The prospects for seasonal forecasting – A review paper. Q. J. R. Meteorol. Soc. 120, 755–793 (1994).  https://doi.org/10.1002/qj.49712051802CrossRefGoogle Scholar
  26. J.K. Roundy, X. Yuan, J. Schaake, E.F. Wood, A framework for diagnosing seasonal prediction through canonical event analysis. Mon. Weather Rev. 143, 2404–2418 (2015).  https://doi.org/10.1175/MWR-D-14-00190.1CrossRefGoogle Scholar
  27. J. Schaake, J. Demargne, R. Hartman, M. Mullusky, E. Welles, L. Wu, H. Herr, X. Fan, D.J. Seo, Precipitation and temperature ensemble forecasts from single-value forecasts. Hydrol. Earth. Syst. Sci. Discuss. 4, 655–717 (2007).CrossRefGoogle Scholar
  28. J. Sheffield, E.F. Wood, Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Clim. 21, 432–458 (2008).  https://doi.org/10.1175/2007JCLI1822.1CrossRefGoogle Scholar
  29. J.A. Smith, M.L. Baeck, G. Villarini, D.B. Wright, W. Krajewski, Extreme flood response: The June 2008 flooding in Iowa. J. Hydrometeorol. 14, 1810–1825 (2013).  https://doi.org/10.1175/JHM-D-12-0191.1CrossRefGoogle Scholar
  30. E.A. Stallings, The Benefits of Hydrologic Forecasting (Silver Spring, Maryland, 1997)Google Scholar
  31. D.M. Straus, J. Shukla, The known, the unknown and the unknowable in the predictability of weather. 175, 20 (2005) [Available from the Center for Ocean– Land–Atmosphere Studies, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705].Google Scholar
  32. Z. Toth, E. Kalnay, Z. Toth, E. Kalnay, Ensemble forecasting at NCEP and the breeding method. Mon. Weather Rev. 125, 3297–3319 (1997).  https://doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2CrossRefGoogle Scholar
  33. G. Villarini, J.A. Smith, R. Vitolo, D.B. Stephenson, On the temporal clustering of US floods and its relationship to climate teleconnection patterns. Int. J. Climatol. 33, 629–640 (2013).  https://doi.org/10.1002/joc.3458CrossRefGoogle Scholar
  34. X. Yuan, E.F. Wood, J.K. Roundy, M. Pan, CFSv2-based seasonal hydroclimatic forecasts over the conterminous United States. J. Clim. 26, 4828–4847 (2013).  https://doi.org/10.1175/JCLI-D-12-00683.1CrossRefGoogle Scholar
  35. J.H. Zar, Spearman rank correlation, in Encyclopedia of Biostatistics (Wiley, 2005).  https://doi.org/10.1002/0470011815.b2a15150

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Department of Civil, Environmental, and Architectural EngineeringUniversity of KansasLawrenceUSA
  2. 2.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  3. 3.Independent Environmental Services ProfessionalAnnapolisUSA

Section editors and affiliations

  • Qingyun Duan
    • 1
  • John C. Schaake
    • 2
  1. 1.Beijing Normal UniversityBeijingChina
  2. 2.AnnapolisUSA

Personalised recommendations