Probabilistic Inundation Forecasting

  • A. MuellerEmail author
  • C. BaughEmail author
  • P. BatesEmail author
  • Florian PappenbergerEmail author
Reference work entry


Many existing operational hydrological ensemble forecasting systems only produce forecasts of river discharge. It is possible to convert discharge forecasts into inundation extents, in particular because there are well-established tools for the estimation of inundation hazard. The basic components of the modeling framework from which to produce inundation forecasts are: (1) meteorological forcing; (2) a hydrological model; (3) a hydraulic model; and; (4) a methodology to derive probabilistic inundation maps. We perform all those steps using the example of the 2013 River Elbe event. We validate the maps of flooding probability against the observations. We stress the importance of the spatial discretization of the digital elevation maps (DEM) and the influence of the resolution of the flood defense topographic features. This study shows that up to 80% of the flooded area along the Elbe in 2013 could have been forecasted to inundate 7 days in advance, using the probabilistic modeling framework proposed.


Probabilistic forecast Ensemble forecast Inundation forecast Forecast skill 


  1. L. Alfieri, P. Salamon, F. Pappenberger, F. Wetterhall, J. Thielen, Operational early warning systems for water-related hazards in Europe. Environ. Sci. Policy 21, 35–49 (2012). 10.1016/j.envsci.2012.01.00CrossRefGoogle Scholar
  2. L. Alfieri, P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thielen, F. Pappenberger, GloFAS global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci. 17, 1161–1175 (2013). Scholar
  3. P. Bates, A. de Roo, A simple raster-based model for flood inundation simulation. J. Hydrol. 236, 54–77 (2000)CrossRefGoogle Scholar
  4. P. Bates, M.S. Horritt, T.J. Fewtrell, A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 387, 33–45 (2010)CrossRefGoogle Scholar
  5. K. Bogner, H. Cloke, F. Pappenberger, A. de Roo, J. Thielen, Improving the evaluation of hydrological multi-model forecast performance in the Upper Danube catchment. Int. J. River Basin Manag. (2011). Scholar
  6. K. Bogner, D. Meißner, F. Pappenberger, Korrektur von Modell- und Vorhersagefehlern und Abschätzung der prädiktiven Unsicherheit in einem probabilistischen Hochwasservorhersagesystem. Hydrol. Wasserbewirtsch. 58(2), 73–75 (2014).,2_2CrossRefGoogle Scholar
  7. H.L. Cloke, F. Pappenberger, Ensemble flood forecasting: a review. J. Hydrol. 375(3–4), 613–626 (2009)CrossRefGoogle Scholar
  8. H.L. Cloke, J. Thielen, F. Pappenberger, S. Nobert, P. Salamon, R. Buizza, G. Blint, C. Edlund, A. Koistinen, C. de Saint-Aubin, C. Viel, E. Sprokkereef, Progress in the implementation of Hydrological Ensemble Prediction Systems (HEPS) in Europe for operational flood forecasting. ECMWF Newsletter No 121 (2009), pp. 20–24Google Scholar
  9. M. Dale, J. Wicks, J. Mylne, F. Pappenberger, S. Laeger, Probabilistic flood forecasting and decision-making: an innovative risk-based approach. Nat. Hazards 70(1), 159–172 (2014). Scholar
  10. A.M. de Almeida, P. Bates, Applicability of the local inertial approximation of the shallow water equations to flood modelling. Water Resour. Res. 49, 4833–4844 (2013)CrossRefGoogle Scholar
  11. D. Demeritt, S. Nobert, H.L. Cloke, F. Pappenberger, The European Flood Alert System and the communication, perception, and use of ensemble predictions for operational flood risk management. Hydrol. Process. 27, 147157 (2013). Scholar
  12. I.B. Mason, Binary Events, in Forecast Verification a Practitioners Guide in Atmospheric Science, ed. by I.T. Jolliffe, D.B. Stephenson (Wiley, Hoboken, 2003), 240 ppGoogle Scholar
  13. J. Neal, G. Schumann, P. Bates, A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour. Res. 48, W11506 (2012)CrossRefGoogle Scholar
  14. F. Pappenberger, K.J. Beven, N.M. Hunter, P.D. Bates, B.T. Gouweleeuw, J. Thielen, Cascading model uncertainty from medium-range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within European Flood Forecasting System (EFFS). Hydrol. Earth Syst. Sci. 9(4), 381–393 (2005)CrossRefGoogle Scholar
  15. F. Pappenberger, J. Thielen, M. del Medico, The impact of weather forecast improvements on large scale hydrology: analysing a decade of forecasts of the European Flood Alert System. Hydrol. Process. 25(7), 1091–1113 (2011). Scholar
  16. F. Pappenberger, E. Dutra, F. Wetterhall, H.L. Cloke, Deriving global flood hazard maps of fluvial floods through a physical model cascade. Hydrol. Earth Syst. Sci. 16, 4143–4156 (2012). Scholar
  17. F. Pappenberger et al., Floods in Central Europe in June 2013. ECMWF Newsletter, No. 136, Summer (2013)Google Scholar
  18. F. Pappenberger, L. Stephens, S.J. van Andel, J.S. Verkade, M.H. Ramos, L. Alfieri, J.D. Brown, M. Zappa, G. Ricciardi, A. Wood, T. Pagano, R. Marty, W. Collischonn, M. Le Lay, D. Brochero, M. Cranston, D. Meissner, Operational HEPS systems around the globe (2014), Accessed 10 Apr 2014
  19. M.H. Ramos, S.J. van Andel, F. Pappenberger, Do probabilistic forecasts lead to better decisions? Hydrol. Earth Syst. Sci. 17, 2219–2232 (2013). Scholar
  20. E. Rodriguez, C.S. Morris, J.E. Belz, A global assessment of the SRTM performance. Photogramm. Eng. Remote. Sens. 72(3), 249–260 (2006)CrossRefGoogle Scholar
  21. B. Sanders, Evaluation of on-line DEMs for flood inundation modeling. Adv. Water Resour. 30, 1831–1843 (2007)CrossRefGoogle Scholar
  22. G.J.-P. Schumann, J.C. Neal, N. Voisin, K.M. Andreadis, F. Pappenberger, N. Phanthuwongpakdee, A.C. Hall, P.D. Bates, A first large scale flood inundation forecasting model. Water Resour. Res. 49, 6248–6257 (2013). Scholar
  23. J. Thielen, J. Bartholmes, M.-H. Ramos, A. de Roo, The European flood alert system – part 1: concept and development. Hydrol. Earth Syst. Sci. 13, 125140 (2009)Google Scholar
  24. J.M. Van der Knijff, J. Younis, A.P.J. de Roo, LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 24, 189–212 (2010)CrossRefGoogle Scholar
  25. N. Voisin, F. Pappenberger, D.P. Lettenmaier, R. Buizza, J.C. Schaake, Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River Basin. Weather Forecast. 26, 425446 (2011)CrossRefGoogle Scholar
  26. F. Wetterhall, F. Pappenberger, L. Alfieri, H.L. Cloke, J. Thielen-del Pozo, S. Balabanova, J. Dahelka, A. Vogelbacher, P. Salamon, I. Carrasco, A.J. Cabrera-Tordera, M. Corzo-Toscano, M. Garcia-Padilla, R.J. Garcia-Sanchez, C. Ardilouze, S. Jurela, B. Terek, A. Csik, J. Casey, G. Stanknaviius, V. Ceres, E. Sprokkereef, J. Stam, E. Anghel, D. Vladikovic, C. Alionte Eklund, N. Hjerdt, H. Djerv, F. Holmberg, J. Nilsson, K. Nystrm, M. Sunik, M. Hazlinger, M. Holubecka, HESS Opinions “Forecaster priorities for improving probabilistic flood forecasts”. Hydrol. Earth Syst. Sci. 17, 4389–4399 (2013). Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geography and Environmental Science DepartmentUniversity of Reading and European Centre for Medium-Range Forecast (ECMWF)ReadingUK
  2. 2.European Centre for Medium-Range Forecast (ECMWF)ReadingUK
  3. 3.Department of Geography, School of Geographical SciencesUniversity of BristolBristolUK
  4. 4.European Centre for Medium‐Range Weather Forecasts, ECMWFReadingUK

Personalised recommendations