Advertisement

Hydropower Forecasting in Brazil

  • Carlos E. M. TucciEmail author
  • Walter Collischonn
  • Fernando Mainardi Fan
  • Dirk Schwanenberg
Reference work entry

Abstract

Most of the electric power in Brazil comes from hydropower, and the short-term power production at each of the major power plants in Brazil is optimized using streamflow forecasts of lead times up to 14 days. These forecasts were usually obtained using stochastic models based only on the last observed streamflow values. During the last few years, rainfall–runoff models that use predicted rainfall as the main input start to replace the stochastic models. However, this new model generation still uses deterministic precipitation forecasts and does not take advantage of the ensemble precipitation forecasts that are already available in Brazil from regional and global meteorological models. Based on recent research results, it is likely that ensemble streamflow forecasts outperform deterministic forecasts in application to short-term reservoir management for objectives such as energy generation and flood mitigation. This chapter presents an assessment of 4 years of ensemble inflow forecasts to a major hydropower reservoir in Brazil, the Três Marias dam, on the São Francisco River. A 14 member ensemble obtained from a global numerical weather prediction model of the Brazilian Center for Weather Prediction is used, and results are evaluated in terms of ensemble applicability for a period between 2008 and 2012. Results are encouraging, and due to this it is believed that ensemble inflow forecasts to major reservoirs in Brazil will be used in a near future as input to the optimization of the national electric power producing system.

Keywords

Ensemble inflow forecasts Reservoir operation Brazil 

References

  1. P. Bougeault, Z. Toth, C. Bishop, B. Brown, D. Burridge, D.H. Chen, B. Ebert, M. Fuentes, T.M. Hamill, K. Mylne, J. Nicolau, T. Paccagnella, Y. Park, D. Parsons, B. Raoult, D. Schuster, P.S. Dias, R. Swinbank, Y. Takeuchi, W. Tennant, The THORPEX interactive grand global ensemble. Bull. Am. Meteorol. Soc. 91(8), 1059–1072 (2010). 14pCrossRefGoogle Scholar
  2. A.A. Bradley, S.S. Schwartz, Summary verification measures and their interpretation for ensemble forecasts. Mon. Weather Rev. 139(9), 3075–3089 (2011)CrossRefGoogle Scholar
  3. J.M. Bravo, A.R. Paz, W. Collischonn, C.B. Uvo, O.C. Pedrollo, S. Chou, Incorporating forecasts of rainfall in two hydrologic models used for medium-range streamflow forecasting. J. Hydrol. Eng. 14, 435–445 (2009)CrossRefGoogle Scholar
  4. J.D. Brown, J. Demargne, D.-J. Seo, Y. Liu, The ensemble verification system (EVS): a software tool for verifying ensemble forecasts of hydrometeorological and hydrologic variables at discrete locations. Environ. Model. Softw. 25(7), 854–872 (2010)CrossRefGoogle Scholar
  5. L. Calvetti, Hydrometeorologic ensemble forecasts in the Upper Iguassu river basin using WRF and TopModel. Ph.D. thesis (in portuguese). Instituto de Astronomia, Geofísica e Ciências Atmosféricas. Universidade Federal de São Paulo, 2011. 141pGoogle Scholar
  6. M. Cataldi, C.O. Machado, L.G.F. Guilhon, S.C. Chou, J.L. Gomes, J.F. Bustamante, Análise de Previsões de Precipitação obtidas com a utilização do modelo ETA como insumo para modelos de previsão semanal de vazão natural. Rev. Bras. Recursos Hídricos. 12, 5–12 (2007)Google Scholar
  7. S.C. Chou, C.A. Tanajura, Y. Xue, C.A. Nobre, Validation of the coupled ETA/SSiB model over South America. J. Geophys. Res. 107(D20), 8088 (2002)CrossRefGoogle Scholar
  8. W. Collischonn, C.E.M. Tucci, R. Haas, I. Andreolli, Forecasting river Uruguay flow using rainfall forecasts from a regional weather-prediction model. J. Hydrol. 305, 87–98 (2005)CrossRefGoogle Scholar
  9. W. Collischonn, D.G. Allasia, B.C. Silva, C.E.M. Tucci, The MGB-IPH model for large scale rainfall-runoff modeling. Hydrol. Sci. J. 52, 878–895 (2007a)CrossRefGoogle Scholar
  10. W. Collischonn, C.E.M. Tucci, R.T. Clarke, S.C. Chou, L.G. Guilhon, M. Cataldi, D.G. Allasia, Medium-range reservoir inflow predictions based on quantitative precipitation forecasts. J. Hydrol. 344, 112–122 (2007b)CrossRefGoogle Scholar
  11. W. Collischonn, A. Meller, P.L. Silva Dias, D.S. Moreira, Hindcast experiments of ensemble streamflow forecasting for the Paraopeba river. Geophys. Res. Abstr. 14, 3596 (2012)Google Scholar
  12. W. Collischonn, A. Meller, F. Fan, D.S. Moreira, P.L. Silva Dias, D. Buarque, J.M. Bravo, Short-term ensemble flood forecasting experiments in Brazil. Geophys. Res. Abstr. 15, 11910 (2013)Google Scholar
  13. F.S. Costa, I.P. Raupp, J.M. Damazio, P.D. Oliveira, L.G.F. Guilhon, The methodologies for the flood control planning using hydropower reservoirs in Brazil, in 6th International Conference on Flood Management, ICMF6, São Paulo, 2014 (ABRH, São Paulo, 2014)Google Scholar
  14. EPE – EMPRESA DE PESQUISA ENERGÉTICA, Anuário estatístico de energia elétrica 2013. Rio de Janeiro: EPE, 2013. 253 pGoogle Scholar
  15. B.A. Faber, J.R. Stedinger, Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts. J. Hydrol. 249, 113–133 (2001)CrossRefGoogle Scholar
  16. F. M. Fan, V. A. Siqueira, P. R. M. Pontes, W. Collischonn, Avaliação do Uso de Dados de Precipitação do Merge para Simulação Hidrológica da Bacia do Rio Paraná. In: XVII Congresso Brasileiro de Meteorologia, 2012, Gramado – RS. AVALIAÇÃO DO USO DE DADOS DE PRECIPITAÇÃO DO MERGE PARA SIMULAÇÃO HIDROLÓGICA DA BACIA DO RIO PARANÁ, 2012aGoogle Scholar
  17. F. M. Fan, P. R. M. Pontes, W. Collischonn, L. F. S. Beltrame, Sistema de Previsão de Vazões para as Bacias dos Rios Taquari-Antas e Pelotas, in XI Simpósio de Recursos Hídricos do Nordeste, 2012, João Pessoa PB. Sistema de Previsão de Vazões para as Bacias dos Rios Taquari-Antas e Pelotas, 2012bGoogle Scholar
  18. F.M. Fan, W. Collischonn, A. Meller, L.C.M. Botelho, Ensemble streamflow forecasting experiments in a tropical basin: the São Francisco river case study. J. Hydrol. 519, 2906–2919 (2014)CrossRefGoogle Scholar
  19. F. M. Fan, W. Collischonn, K. Quiroz, M. V. Sorribas, D. C. Buarque, V. A. Siqueira, Flood forecasting on the Tocantins River using ensemble rainfall forecasts and real-time satellite rainfall estimates. J Flood Risk Manag. v. SI (2015a). doi:10.1111/jfr3.12177CrossRefGoogle Scholar
  20. F. M. Fan, D. Schwanenberg, W. Collischonn, A. Weerts, Verification of inflow into hydropower reservoirs using ensemble forecasts of the TIGGE database for large scale basins in Brazil. J. Hydrol.: Reg. Stud. (2015b) (in press). doi:10.1016/j.ejrh.2015.05.012Google Scholar
  21. L.G.F. Guilhon, V.F. Rocha, J.C. Moreira, Comparison of forecasting methods for natural inflows in hydropower developments. Braz. J. Water Res. 12(3), 13–20 (2007) (in Portuguese)Google Scholar
  22. T. Hamill, R. Hagedorn, J. Whitaker, Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. part II: precipitation. Mon. Weather Rev. 136(7), 2620–2632 (2008)CrossRefGoogle Scholar
  23. A.F. Hamlet, D. Huppert, D.P. Lettenmaier, Economic value of longlead streamflow forecasts for Columbia river hydropower. J. Water Resour. Plann. Manage. 128(2), 91–101 (2002)CrossRefGoogle Scholar
  24. H. Hersbach, Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather Forecast. 15, 559–570 (2000)CrossRefGoogle Scholar
  25. I.T. Jolliffe, D.B. Stephenson (eds.), Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd edn. (Wiley, Chichester, 2012)Google Scholar
  26. M.E.P. Maceira, J.M. Damázio, Periodic auto-regressive streamflow models applied to operation planning for the Brazilian hydroelectric system, in Regional Hydrological Impacts of Climatic Change – Impact Assessment and Decision Making. IAHS Publ, vol. 295 (IAHS Press, Wallingford, 2005)Google Scholar
  27. M.E.P. Maceira, L.A. Terry, F.S. Costa, J.M. DAMÁZIO, A.C.G. e MELO, Chain of optimization models for setting the energy dispatch and spot price in the Brazilian system, in Anais do XIV Power Systems Computation Conference, session 43, paper 1, Sevilla, 2002Google Scholar
  28. E.P. Maurer, Predictability of Runoff in the Mississipi River Basin. Water Resour. Ser. Tech. Rep, vol. 172 (University of Washington, Seattle, 2002)Google Scholar
  29. A. Meller, Short-range ensemble flood forecasting. Ph.D thesis. (In Portuguese) Instituto de Pesquisas Hidráulicas. Universidade Federal do Rio Grande do Sul, 2013. 224pGoogle Scholar
  30. A. Meller, J.M. Bravo, W. Collischonn, Assimilação de Dados de Vazão na Previsão de Cheias em Tempo-Real com o Modelo Hidrológico MGB-IPH. Rev. Bras. Recur. Hidr. 17, 209–224 (2012)Google Scholar
  31. A.M. Mendonça, J.P. Bonatti, Experiments with EOF-based perturbation methods and their impact on the CPTEC/INPE ensemble prediction system. Mon. Weather Rev. 137, 1438–1459 (2009)CrossRefGoogle Scholar
  32. R.C.D. Paiva, D.C. Buarque, W. Collischonn, M.-P. Bonnet, F. Frappart, S. Calmant, C.A. Bulhões Mendes, Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour. Res. 49, 1226–1243 (2013)CrossRefGoogle Scholar
  33. F. Pappenberger, K. Bogner, F. Wetterhall, Y. He, H.L. Cloke, J. Thielen, Forecast convergence score: a forecaster’s approach to analysing hydro-meteorological forecast systems. Adv. Geosci. 29, 27–32 (2011). doi:10.5194/adgeo-29-27-2011CrossRefGoogle Scholar
  34. A. R. Paz, W. Collischonn, C. E. M. Tucci, R. T. Clarke, D. G. Allasia, Data assimilation in a large-scale distributed hydrological model for medium-range flow forecasts, in Symposium of the IUGG, 2007, Perugia. Quantification and Reduction of predictive uncertainty for sustainable water resources management (Proceedings of Symposium HS2004 at IUGG2007), (IAHS Press, Wallingford, 2007), p. 471–478Google Scholar
  35. M. Pereira, L. Pinto, Multi-stage stochastic optimization applied to energy planning. Math. Program. 52(1–3), 359–375 (1991)CrossRefGoogle Scholar
  36. L. Raso, N. Van De Giesen, P. Stive, D. Schwanenberg, P.J. Van Overloop, Tree structure generation from ensemble forecasts for real time control. Hydrol. Process. 27, 75–82 (2013)CrossRefGoogle Scholar
  37. D. Schwanenberg, F.M. Fan, S. Naumann, J.I. Kuwajima, R.A. Montero, A. Assis Dos Reis, Short-term reservoir optimization for flood mitigation under meteorological and hydrological forecast uncertainty. Water Resour. Manag. 920–4741, 1–17 (2015). doi:10.1007/s11269-014-0899-1CrossRefGoogle Scholar
  38. H. Stanski, L. Wilson, W. Burrows, Survey of Common Verification Methods in Meteorology (World Meteorological Organization, Geneva, 1989)Google Scholar
  39. C.E.M. Tucci, P.L.S. Dias, R.T. Clarke, G.O. Sampaio, W. Collischonn, Long-term flow forecasts based on climate and hydrologic modeling: Uruguay river basin. Water Resour. Res. 39(7), 1–2 (2003)CrossRefGoogle Scholar
  40. C.E.M. Tucci, W. Collischonn, R.T. Clarke, A.R. Paz, D. Allasia, Short- and long-term flow forecasting in the Rio Grande watershed (Brazil). Atmos. Sci. Lett. 9, 53–56 (2008)CrossRefGoogle Scholar
  41. D. Wilks, Statistical Methods in the Atmospheric Sciences (Academic, Amsterdam/Boston, 2006)Google Scholar
  42. W.W.-G. Yeh, L. Becker, R. Zettlemaoyer, Worth of inflow forecast for reservoir operation. J. Water Resour. Plann. Manage. 108(WR3), 257–269 (1982)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Carlos E. M. Tucci
    • 1
    Email author
  • Walter Collischonn
    • 1
  • Fernando Mainardi Fan
    • 1
  • Dirk Schwanenberg
    • 2
  1. 1.Institute of Hydraulic ResearchFederal University of Rio Grande do SulPorto Alegre-RSBrazil
  2. 2.Institute of Hydraulic Engineering and Water Resources ManagementUniversität Duisburg-EssenEssenGermany

Personalised recommendations