Advertisement

Medium Range Flood Forecasting Example EFAS

  • Jutta Thielen-del Pozo
  • Peter Salamon
  • Peter Burek
  • Florian Pappenberger
  • C. Alionte Eklund
  • Eric Sprokkereef
  • M. Hazlinger
  • M. Padilla Garcia
  • R. Garcia-Sanchez
Reference work entry

Abstract

Europe repeatedly observes flood events that affect several countries at the same time and which require the coordination of assistance at the European level. The European Flood Awareness System (EFAS) has been developed specifically to respond to the need for forecasting transnational floods with sufficient lead time to allow coordination of aid at the European level in case the national capacities for emergency management are exceeded. In order to achieve robust and reliable flood forecasting at the continental scale with lead times up to 10 days, EFAS promotes probabilistic forecasting techniques based on multiple numerical weather prediction inputs including ensemble prediction systems. Its aim is to complement existing national flood forecasting services with added value information and to provide European decision makers with coherent overviews on ongoing and upcoming floods in Europe for better planning and coordination of aid. To date, EFAS is a unique system providing daily, probabilistic flood forecast information for the entire of Europe on a single platform. Being a complementary system to national ones, EFAS predicts the probabilities for exceeding critical flood thresholds rather than quantitative information on stream flows. By maintaining a dedicated, multinational partner network of EFAS users, novel research could be transferred directly to the operational flood forecasting centers in Europe. EFAS development started in 2003, and the system has become fully operational under the umbrella of Emergency Management Service of the European Copernicus Space Program in 2011.

Keywords

Continental Ensemble prediction Early flood warning 

References

  1. L. Alfieri, D. Velasco, J. Thielen Del Pozo, Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events. Adv. Geosci. 29, 69–75 (2011)CrossRefGoogle Scholar
  2. L. Alfieri, P. Salamon, F. Pappenberger, F. Wetterhall, J. Thielen, Operational early warning systems for water-related hazards in Europe. Environ. Sci. Pol. 21, 35–49 (2012a)CrossRefGoogle Scholar
  3. L. Alfieri, J. Thielen, F. Pappenberger, Ensemble hydro-meteorological simulation for flash flood early detection in southern Switzerland. J. Hydrol. 424–425, 43–153 (2012b)Google Scholar
  4. L. Alfieri, M. Berenguer, V. Knechtl, K. Liechti, D. Sempere-Torres, M. Zappa, Flash flood forecasting based on rainfall thresholds, in Handbook of Hydrometeorological Ensemble Forecasting, ed. by Q. Duan et al. (Springer, Berlin/Heidelberg, this issue).  https://doi.org/10.1007/978-3-642-40457-3_49-1Google Scholar
  5. M.H.N. Bakker, Transboundary river floods: vulnerability of continents, international river basins and countries. Ph.D Dissertation, Oregon State University, 276, (2007), http://hdl.handle.net/1957/3821
  6. J.C. Bartholmes, J. Thielen, M.H. Ramos, S. Gentilini, The European Flood Alert System EFAS – part 2: statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol. Earth Syst. Sci. 13, 141–153 (2009)CrossRefGoogle Scholar
  7. K. Bogner, F.Pappenberger, Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system. Water. Resour. Res (Impact Factor: 3.15) 47 (2011). : https://doi.org/10.1029/2010WR009137
  8. K. Bogner, M. Kalas, Error-correction methods and evaluation of an ensemble based hydrological forecasting system for the Upper Danube catchment. Atmos. Sci. Lett. 9(2), 95–102 (2008)CrossRefGoogle Scholar
  9. K. Bogner, H.L. Cloke, F. Pappenberger, A. De Roo, J. Thielen, Improving the evaluation of hydrological multi-model forecast performance in the Upper Danube Catchment. Int. J. River Basin Manage. 10(1), 1–12 (2012a). ISSN 1814–2060.  https://doi.org/10.1080/15715124.2011.625359CrossRefGoogle Scholar
  10. K. Bogner, F. Pappenberger, H.L. Cloke, Technical note: the normal quantile transformation and its application in a flood forecasting system. Hydrol. Earth Syst. Sci. 16, 1085–1094 (2012b). ISSN 1027–5606.  https://doi.org/10.5194/hess-16-1085-2012
  11. R. Brazdil, C. Pfister, H. Wanner, H. von Storch, J. Luterbacher, Historical climatology in Europe – the state of the art. Clim. Change 70, 363–430 (2005)CrossRefGoogle Scholar
  12. R. Buizza, A. Hollingsworth, F. Lalaurette, A. Ghelli, Probabilistic predictions of precipitation using the ECMWF ensemble prediction system. Weather Forecast. 14, 168–189 (1999)CrossRefGoogle Scholar
  13. H.L. Cloke, F. Pappenberger, Ensemble flood forecasting: a review. J. Hydrol. 375(3–4), 613–626 (2009)CrossRefGoogle Scholar
  14. H. Cloke, J. Thielen, F. Pappenberger, S. Nobert, G. Balint, C. Edlund, A. Koistinen, C. de Saint-Aubin, E. Sprokkereef, C. Viel, P. Salamon, R. Buizza, Progress in the implementation of Hydrological Ensemble Prediction Systems (HEPS) in Europe for operational flood forecasting. ECMWF Newsletter 121, 20–24 (2009)Google Scholar
  15. H. Cloke, F. Pappenberger, J. Thielen, V. Thiemig, Operational European flood forecasting, in Environmental Modelling: Finding Simplicity in Complexity, ed. by J. Wainwright, M. Mulligan, 2nd edn. (Wiley, Chichester, 2013a).  https://doi.org/10.1002/9781118351475.ch25CrossRefGoogle Scholar
  16. H.L. Cloke, F. Pappenberger, S.J. van Andel, J. Schaake, J. Thielen, M.-H. Ramos, Hydrological ensemble prediction systems. Hydrol. Process. 27, 1–4 (2013b).  https://doi.org/10.1002/hyp.9679
  17. H.L. Cloke, F. Wetterhall, Y. He, J.E. Freer, F. Pappenberger, Modelling climate impact on floods with ensemble climate projections. Q. J. R. Meteorol. Soc. 139(671 part B), 282–297 (2013c). ISSN 1477-870X.  https://doi.org/10.1002/qj.1998CrossRefGoogle Scholar
  18. M. Collins, S. Knight, Ensembles and probabilities: a new era in the prediction of climate change. Phil. Trans. R. Soc. A. 365, (1857), 1471–2962 (2007)CrossRefGoogle Scholar
  19. A. de Roo, J. Thielen, P. Salamon, K. Bogner, S. Nobert, H.L. Cloke, D. Demeritt, J. Younis, M. Kalas, K. Bódis, D. Muraro, F. Pappenberger, Quality control, validation and user feedback of the European Flood Alert System (EFAS). Int. J. Digital Earth. 4(Supplement 1), 77--90 (2011), Special IssueCrossRefGoogle Scholar
  20. A. de Roo, B. Gouweleeuw, J. Thielen, J. Bartholmes, P. Bongioannini-Cerlini, E. Todini, P. Bates, M. Horritt, N. Hunter, K.J. Beven, F. Pappenberger, E. Heise, G. Rivin, M. Hills, A. Hollingsworth, B. Holst, J. Kwadijk, P. Reggiani, M. van Dijk, K. Sattler, E. Sprokkereef, Development of a European Flood Forecasting System. Int. J. River Basin Manage. 1, 49–59 (2003)Google Scholar
  21. D. Demeritt, H. Cloke, F. Pappenberger, J. Thielen, J. Bartholmes, M.H. Ramos, Ensemble predictions and perceptions of risk, uncertainty, and error in flood forecasting. Environ. Hazards 7, 115–127 (2007)CrossRefGoogle Scholar
  22. B. Gouweleeuw, P. Reggiani, A. De Roo, A European Flood Forecasting System EFFS. Full Report, European Report EUR21208, EC DG JRC & WL Delft Hydraulics, p. 304 (2004)Google Scholar
  23. B.T. Gouweleeuw, J. Thielen, G. Franchello, A.P.J. de Roo, R. Buizza, Flood forecasting using medium-range probabilistic weather prediction. Hydrol. Earth Syst. Sci. 9(4), 365–380 (2005)CrossRefGoogle Scholar
  24. Y. He, F. Wetterhall, H.L. Cloke, F. Pappenberger, M. Wilson, J. Freer, G. McGregor, Tracking the uncertainty in flood alerts driven by grand ensemble weather predictions. Met. Apps 16, 91–101 (2009).  https://doi.org/10.1002/met.132CrossRefGoogle Scholar
  25. W.-R. Hsu, A.H. Murphy, The attributes diagram: a geometric framework for assessing the quality of probability forecasts. Int. J. Forecast. 2, 285–293 (1986)CrossRefGoogle Scholar
  26. I.T. Jolliffe, D.B. Stephenson, Forecast Verification: A practitioner’s Guide in Atmospheric Science (Wiley, Chichester, 2003)Google Scholar
  27. F. Pappenberger, K.J. Beven, N.M. Hunter, P.D. Bates, B.T. Gouweleeuw, J. Thielen, A.P.J. de Roo, Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European flood forecasting system EFFS). Hydrol. Earth Syst. Sci. 9(4), 381–393 (2005)CrossRefGoogle Scholar
  28. F. Pappenberger, J. Bartholmes, J. Thielen, H.L. Cloke, R. Buizza, A. de Roo, New dimensions in early flood warning across the globe using grand-ensemble weather predictions. Geophys. Res. Lett. 35, L10404 (2008).  https://doi.org/10.1029/2008GL033837CrossRefGoogle Scholar
  29. F. Pappenberger, J. Thielen Del Pozo, M. Del Medico, The impact of weather forecast improvements on large scale hydrology: analysing a decade of forecasts of the European Flood Alert System. Hydrol. Process. 25(7), 1091–1113 (2011a)CrossRefGoogle Scholar
  30. F. Pappenberger, K. Bogner, F. Wetterhall, H. Yi, H. Cloke, J. Thielen Del Pozo, Forecast convergence score: a forecaster’s approach to analysing hydro-meteorological forecast systems. Adv. Geosci. 29, 27–32 (2011b)CrossRefGoogle Scholar
  31. F. Pappenberger, E. Stephens, J. Thielen, P. Salamon, D. Demeritt, S.J. van Andel, F. Wetterhall, L. Alfieri, Visualizing probabilistic flood forecast information: expert preferences and perceptions of best practice in uncertainty communication. Hydrol. Process. 27(1), 132–146 (2013). http://onlinelibrary.wiley.com/doi/10.1002/hyp.9253/fullCrossRefGoogle Scholar
  32. F. Pappenberger, H.L. Cloke, D.J. Parker, F. Wetterhall, D.S. Richardson, J. Thielen, The monetary benefit of early flood warnings in Europe. Environ. Sci. Pol. 51, 278–291 (2015a). ISSN 1873–6416. : https://doi.org/10.1016/j.envsci.2015.04.016CrossRefGoogle Scholar
  33. F. Pappenberger, M.H. Ramos, H.L. Cloke, F. Wetterhall, L. Alfieri, K. Bogner, A. Mueller, P. Salamon, How do I know if my forecasts are better? Using benchmarks in Hydrological ensemble prediction. J. Hydrol. 522, 697–713 (2015b). ISSN 0022–1694.  https://doi.org/10.1016/j.jhydrol.2015.01.024CrossRefGoogle Scholar
  34. M.-H. Ramos, J. Bartholmes, J. Thielen-del Pozo, Development of decision support products based on ensemble forecasts in the European flood alert system. Atmos. Sci. Lett. 8(4), 113–119 (2007)CrossRefGoogle Scholar
  35. J. Schaake, K. Franz, A. Bradley, R. Buizza, The Hydrological Ensemble Prediction EXperiment (HEPEX). Hydrol. Earth Syst. Sci. Discuss. 3, 3321–3332 (2006)CrossRefGoogle Scholar
  36. E. Stephens, H. Cloke, Improving flood forecasts for better flood preparedness in the UK (and beyond). Geochem. J. 180, 310–316 (2014).  https://doi.org/10.1111/geoj.12103CrossRefGoogle Scholar
  37. J. Thielen, J. Schaake, R. Hartman, R. Buizza, Aims, challenges and progress of the Hydrological Ensemble Prediction Experiment (HEPEX) following the third HEPEX workshop held in Stresa 27 to 29 June 2007. Atmos. Sci. Lett. 9, 29–35 (2008a)CrossRefGoogle Scholar
  38. J. Thielen, P. Salamon, A. De Roo, “Geographical information systems – An integral part of the European Flood Alert System (EFAS)”. GeoFocus (Editorial) (8), 12–16 (2008b). ISSN: 1578–5157Google Scholar
  39. J. Thielen, J. Bartholmes, M.-H. Ramos, A. de Roo, The European Flood Alert System – part 1: concept and development. Hydro. Earth Syst. ScI 13, 125–140 (2009)CrossRefGoogle Scholar
  40. J. Thielen, F. Pappenberger, P. Salamon, K. Bogner, P. Burek, A. de Roo, State of the art of flood forecasting – from deterministic to probabilistic approaches, in Flood Hazards: Impacts and Responses for the Built Environment, ed. by J. Lamond, C. Booth, F. Hammond, D. Proverbs, T. Francis (Francis and Taylor, London, 2011), 371 ppGoogle Scholar
  41. J. Toothill, Central European Flooding August 2002, Technical Report EQECAT, ABS Consulting, 21 p, (2002)Google Scholar
  42. J.M. van der Knijff, J. Younis, A.P.J. de Roo, LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 24, 189–212 (2010)Google Scholar
  43. F. Wetterhall, F. Pappenberger, H. Cloke, J. Thielen del Pozo et al., Forecasters priorities for improving probabilistic flood forecasts. Hydrol. Earth Syst. Sci. 17, 4389–4399 (2013)CrossRefGoogle Scholar
  44. P. Yiou, P. Ribereau, P. Naveau, M. Nogaj, R. Brazdil, Statistical analysis of floods in Bohemia (Czech Republic) since 1825. Hydrol. Sci. J. 51(5), 930–945 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jutta Thielen-del Pozo
    • 1
  • Peter Salamon
    • 9
  • Peter Burek
    • 2
  • Florian Pappenberger
    • 3
  • C. Alionte Eklund
    • 4
  • Eric Sprokkereef
    • 5
  • M. Hazlinger
    • 6
  • M. Padilla Garcia
    • 7
  • R. Garcia-Sanchez
    • 8
  1. 1.European CommissionJoint Research CentreIspraItaly
  2. 2.Water Program (WAT)International Institute for Applied System Analysis (IIASA)LaxenburgAustria
  3. 3.European Centre for Medium-Range Weather Forecast, ECMWFReadingUK
  4. 4.Swedish Meteorological and Hydrological InstituteNorrkoepingSweden
  5. 5.Ministry of Infrastructure and the Environment, Water Management Centre of the Netherlands, River Forecasting ServiceLelystadThe Netherlands
  6. 6.Slovak Hydrometeorological InstituteBratislavaSlovakia
  7. 7.REDIAMSevillaSpain
  8. 8.ELIMCO SISTEMAS S.L.SevillaSpain
  9. 9.European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Climate Risk Management UnitIspraItaly

Personalised recommendations