Advertisement

Hydrological Ensemble Prediction Systems Around the Globe

  • Florian Pappenberger
  • Thomas C. Pagano
  • J. D. Brown
  • Lorenzo Alfieri
  • D. A. Lavers
  • L. Berthet
  • F. Bressand
  • Hannah L. Cloke
  • M. Cranston
  • J. Danhelka
  • J. Demargne
  • N. Demuth
  • C. de Saint-Aubin
  • P. M. Feikema
  • M. A. Fresch
  • R. Garçon
  • A. Gelfan
  • Y. He
  • Y. -Z. Hu
  • B. Janet
  • N. Jurdy
  • P. Javelle
  • L. Kuchment
  • Y. Laborda
  • E. Langsholt
  • M. Le Lay
  • Z. J. Li
  • F. Mannessiez
  • A. Marchandise
  • R. Marty
  • D. Meißner
  • D. Manful
  • D. Organde
  • V. Pourret
  • Silke Rademacher
  • Maria-Helena Ramos
  • D. Reinbold
  • S. Tibaldi
  • P. Silvano
  • Peter Salamon
  • D. Shin
  • C. Sorbet
  • Eric Sprokkereef
  • V. Thiemig
  • Narendra Kumar Tuteja
  • S. J. van Andel
  • Jan S. Verkade
  • B. Vehviläinen
  • A. Vogelbacher
  • Fredrik Wetterhall
  • Massimiliano Zappa
  • R. E. Van der Zwan
  • Jutta Thielen-del Pozo
Reference work entry

Abstract

A large number of hydrological forecasting systems exist across the globe. Recent advances have pushed the limits of predictability of discharge and other hydrological variables from a few hours to several days or even months. In this chapter, we aim to give an overview of Hydrological Ensemble Prediction Systems across the globe. It provides brief descriptions of existing or preoperational systems as background, and discusses the challenges ahead. This overview shows that there is at least one system per continent, though their geographic domain varies considerably among very small catchments, countries national and interregional basins, transnational basins, continents, or even the entire globe. It highlights common challenges and differences.

Keywords

African Flood Forecasting System (AFFS) AquaLog/Hydrog LAEF Community Hydrologic Prediction System (CHPS) Ensemble Prediction System European Flood Awareness System (EFAS) Flood Early Warning System for the Po River (FEWSPo) Forecast centres Forecast horizons Global Flood Awareness System GloFAS HEPS HUGO Hydrologic Ensemble Forecast Service (HEFS) Hydrological ensemble prediction systems (HEPS) Hydrological models and forcings LARSIM forecast systems MMEFS PREDICTOR Pre-operational HEPS systems RWsOS Rivers Thorpex Interactive Grand Global Ensemble (TIGGE) Water level forecast 

References

  1. N. Addor, S. Jaun, F. Fundel, M. Zappa, An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios. Hydrol. Earth Syst. Sci. 15, 2327–2347 (2011).  https://doi.org/10.5194/hess-15-2327-2011CrossRefGoogle Scholar
  2. A. Agnetti, M. Del Longo, C. De Michele, V. Pavan, S. Pecora, R. Vezzoli, E. Zenoni, Seasonal to daily drought prediction in the Po catchment, Italy, in Proceedings of the 13th Plinius Conference on Mediterranean Storms Savona, Italy 7–9 Sept 2011Google Scholar
  3. L. Alfieri, P. Salamon, F. Pappenberger, F. Wetterhall, J. Thielen, Operational early warning systems for water-related hazards in Europe. Environ. Sci Pol 21, 35–49 (2012)CrossRefGoogle Scholar
  4. L. Alfieri, P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thielen, F. Pappenberger, GloFAS – global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci. 17, 1161–1175 (2013).  https://doi.org/10.5194/hess-17-1161-2013CrossRefGoogle Scholar
  5. L. Alfieri, F. Pappenberger, F. Wetterhall, T. Haiden, D. Richardson, P. Salamon, Evaluation of ensemble streamflow predictions in Europe, J. Hydrol., (online version) (2014).  https://doi.org/10.1016/j.jhydrol.2014.06.035CrossRefGoogle Scholar
  6. F. Anctil, M.H. Ramos, F. Pappenberger, Multi-model approaches for river flow forecasting: blessing or burden? (2014) http://hepex.irstea.fr/multi-model-approaches-for-river-flow-forecasting-blessing-or-burden/. Last accessed 29 Apr 2014
  7. E.A. Anderson, National Weather Service River Forecast System-Snow Accumulation and Ablation Model, NOAA Technical Memorandum: NWS Hydro-17, U.S. National Weather Service (1973)Google Scholar
  8. P. Arnaud, J. Lavabre, Coupled rainfall model and discharge model for flood frequency estimation. Water Resour. Res. 38–6 (2002).  https://doi.org/10.1029/2001WR000474CrossRefGoogle Scholar
  9. G. Balsamo, P. Viterbo, A. Beljaars, B. van den Hurk, M. Hirschi, A.K. Betts, K. Scipal, A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeorol. 10, 623–643 (2009)CrossRefGoogle Scholar
  10. S. Beldring, K. Engeland, L.A. Roald, N.R. Sælthun, A. Voksø, Estimation of parameters in a distributed precipitation-runoff model for Norway. HESS 7(3), 304–316 (2003)Google Scholar
  11. S. Bergström, The HBV model, in Computer Models of Watershed Hydrology, ed. by V.P. Singh (Water Resources Publications, Highlands Ranch, 1995)Google Scholar
  12. L. Berthet, V. Andréassian, C. Perrin, P. Javelle, How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments. Hydrol. Earth Syst. Sci. 13(6), 819–831 (2009).  https://doi.org/10.5194/hess-13-819-2009CrossRefGoogle Scholar
  13. K. Bogner, F. Pappenberger, Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system Water Resour. Res. 47 (2011)Google Scholar
  14. M. Bremicker, G. Brahmer, N. Demuth, F.-K. Holle, I. Haag, Räumlich hoch aufgelöste LARSIM Wasserhaushaltsmodelle für die Hochwasservorhersage und weitere Anwendungen. KW Korrespondenz Wasserwirtschaft. 6(9), 509–514 (2013)Google Scholar
  15. F. Bressand, Le projet ALHTAIR du service d’annonce des crues. La Houille Blanche 2, 64–68 (2002)CrossRefGoogle Scholar
  16. J.D. Brown, J. Demargne, D.-J. Seo, Y. Liu, The Ensemble Verification System (EVS): a software tool for verifying ensemble forecasts of hydrometeorological and hydrologic variables at discrete locations. Environ. Model. Softw. 25, 854–872 (2010)CrossRefGoogle Scholar
  17. P. Burek, J. Van Der Knijff, A. De Roo, LISFLOOD, distributed water balance and flood simulation model – revised user manual 2013. Inst. Environ. Sustain. 2013, 150Google Scholar
  18. R.J.C. Burnash, The NWS river forecast system – catchment modeling, in Computer Models of Watershed Hydrology, ed. by V.P. Singh (Water Resources Publications, Littleton, 1995), pp. 311–366Google Scholar
  19. L. Casicci, A. Montani, S. Pecora, F. Tonelli, M. Vergnani, Pre-operational use of a meteorological and hydrological/hydraulic ensemble approach on the Po River, in Proceedings of The European Geosciences Union General Assembly, Vienna, 3–8 Apr 2011Google Scholar
  20. J. Chardon, T. Mathevet, M. Le Lay, Comparison of two uncertainty dressing methods: SAD VS DAD. In prep. (2014)Google Scholar
  21. M. Clark, S. Gangopadhyay, L. Hay, B. Rajagopalan, R. Wilby, The Schaake shuffle: a method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeorol. 5, 243–262 (2004)CrossRefGoogle Scholar
  22. H.L. Cloke, F. Pappenberger, Ensemble flood forecasting: a review. J. Hydrol. 375(3–4), 613–626 (2009)CrossRefGoogle Scholar
  23. H.L. Cloke, J. Thielen, F. Pappenberger, S. Nobert, P. Salamon, R. Buizza, G. Bálint, C. Edlund, A. Koistinen, C. de Saint-Aubin, C. Viel, E. Sprokkereef, Progress in the implementation of Hydrological Ensemble Prediction Systems (HEPS) in Europe for operational flood forecasting. ECMWF Newsl. 121, 20–24 (2009)Google Scholar
  24. M. Coustau, C. Bouvier, V. Borrell-Estupina, H. Jourde, Flood modelling with a distributed event-based parsimonious rainfall-runoff model: case of the karstic Lez river catchment. Nat. Hazards Earth Syst. Sci. 12, 1119–1133 (2012).  https://doi.org/10.5194/nhess-12-1119-2012CrossRefGoogle Scholar
  25. M.D. Cranston, R. Maxey, A.C.W. Tavendale, P. Buchanan, A. Motion, S. Cole, A. Robson, R.J. Moore, A. Minett, Countrywide flood forecasting in Scotland: challenges for hydrometeorological model uncertainty and prediction, in Weather Radar and Hydrology, Proceedings of Symposium, Exeter (2011), April 2011, IAHS Publ. No. 351Google Scholar
  26. L. Cuo, C.P. Thomas, Q.J. Wang, A review of quantitative precipitation forecasts and their use in short- to medium-range streamflow forecasting. J. Hydrometeorol 12, 713–728 (2011).  https://doi.org/10.1175/2011JHM1347.1CrossRefGoogle Scholar
  27. D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold et al., The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011).  https://doi.org/10.1002/qj.828CrossRefGoogle Scholar
  28. J. Demargne, L. Wu, S.K. Regonda, J.D. Brown, H. Lee, M. He, D-J. Seo, R. Hartman, H.D. Herr, M. Fresch, J. Schaake, Y. Zhu, The science of NOAA’s operational hydrologic ensemble forecast service. Bull. Am. Meteorol. Soc. 79–98 (2014a), in pressCrossRefGoogle Scholar
  29. J. Demargne, L. Wu, S. Regonda, J.D. Brown, H. Lee, M. He, D.-J. Seo, R. Hartman, M. Fresch, J. Schaake, Y. Zhu, The science of NOAA’s operational hydrologic ensemble forecast service. Bull. Am. Meteorol. Soc. 95, 79–98 (2014b).  https://doi.org/10.1175/BAMS-D-12-00081.1CrossRefGoogle Scholar
  30. B. Desaint, P. Nogues, C. Perret, R. Garçon, La prévision hydrométéorologique opérationnelle: l’expérience d’Electricité de France [Operational hydro-meteorological forecasting: the experience of Electricité de France]. La Houille Blanche 5, 39–46 (2009) [in French]Google Scholar
  31. DHI, MIKE 11 – A Modelling System for Rivers and Channels, Reference Manual. DHI Water and Environment, Hørsholm, Danmark (2007)Google Scholar
  32. R.E. Emerton, E.M. Stephens, F. Pappenberger, T.C. Pagano, A.H. Weerts, A.W. Wood, P. Salamon, J.D. Brown, N. Hjerdt, C. Donnelly, C.A. Baugh, H.L. Cloke, Continental and global scale flood forecasting systems, WIREs Water, Under review (2015)Google Scholar
  33. T. Follestad, G. Høst, A statistical model for the uncertainty of meteorological forecasts with application to the Knappom and Røykenes catchments. HYDRA note. Available from NVE, Oslo (1998)Google Scholar
  34. F. Fundel, M. Zappa, Hydrological ensemble forecasting in mesoscale catchments: sensitivity to initial conditions and value of reforecasts. Water Resour. Res. 47, W09520 (2011).  https://doi.org/10.1029/2010WR009996CrossRefGoogle Scholar
  35. F. Fundel, S. Joerg-Hess, M. Zappa, Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices. Hydrol. Earth Syst. Sci. 395–407 (2013).  https://doi.org/10.5194/hess-17-395-2013CrossRefGoogle Scholar
  36. R. Garçon, Modèle global pluie-débit pour la prévision et la prédétermination des crues. La Houille Blanche 7–8, 88–95 (1999)CrossRefGoogle Scholar
  37. C. Gebhardt, S.E. Theis, M. Paulat, Z. Ben Bouallègue, Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res. 100(2–3), 168–177 (2011)CrossRefGoogle Scholar
  38. U. Germann, M. Berenguer, D. Sempere-Torres, M. Zappa, REAL – ensemble radar precipitation for hydrology in a mountanious region. Q. J. R. Meteorol. Soc. 135, 445–456 (2009).  https://doi.org/10.1002/qj.375CrossRefGoogle Scholar
  39. H.Y. He, H.L. Cloke, F. Wetterhall, F. Pappenberger, J. Freer, M. Wilson, Tracking the uncertainty in flood alerts driven by grand ensemble weather predictions. Meteorol. Appl. 16(1), 91–101 (2009)CrossRefGoogle Scholar
  40. F.-K. Holle, Hochwasservorhersage in Bayern, Modellumgebung und DV-Vernetzung, in ÖWAV – Seminar Hochwässer, Bemessung, Risikoanalyse und Vorhersage, Wien 26. Mai 2009. Wiener Mitteilungen, Wasser – Abwasser – Gewässer, Bd. 216, ed. by Institut für Wasserbau und Ingenieurhydrologie TU-Wien (2009). ISBN: 978-3-85234-108-8Google Scholar
  41. P. Javelle, C. Fouchier, P. Arnaud, J. Lavabre, Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture estimations. J. Hydrol. 394(1–2), 267–274 (2010)CrossRefGoogle Scholar
  42. P. Javelle, J. Demargne, D. Defrance, J. Pansu, P. Arnaud, Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrol. Sci. J. 59(7), 1390–1402 (2014).  https://doi.org/10.1080/02626667.2014.923970CrossRefGoogle Scholar
  43. A. Kauffeldt, F. Wetterhall, F. Pappenberger, First step towards a multi-model probabilistic flood forecasting system for Europe, http://hepex.irstea.fr/existing-continental-hydrological-models/. Last accessed 29 Apr 2014
  44. L.S. Kuchment, A.N. Gelfan, A study of effectiveness of the ensemble long-term forecasts of spring floods issued with physically-based models of river runoff formation. Russ. Meteorol. Hydrol. 34, 100–109 (2009)CrossRefGoogle Scholar
  45. L.S. Kuchment, A.N. Gelfan, Assessment of extreme flood characteristics based on a dynamic-stochastic model of runoff generation and the probable maximum discharge. J. Flood Risk Manage. 4, 115–127 (2011)CrossRefGoogle Scholar
  46. L.S. Kuchment, V.N. Demidov, Y.G. Motovilov, A physically-based model of the formation of snowmelt and rainfall runoff, in Modeling Snowmelt-Induced Processes, ed. by E.M. Morris, vol 155 (IAHS Publications, Budapest, 1986), pp. 27–36Google Scholar
  47. M. Le Lay, J. Gailhard, P. Bernard, R. Garçon, Prévisibilité hydrométéorologique à l’échelle intra-saisonnière: l’expérience d’EDF-DTG. Ateliers de Modélisation de l’Atmosphère, Météo-France, Toulouse. (2013). http://www.meteo.fr/cic/meetings/2013/AMA/resumes/pres_027.pdf. [In French]
  48. G. Lindström, B. Johansson, M. Persson, M. Gardelin, S. Bergström, Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 201(1), 272–288 (1997)CrossRefGoogle Scholar
  49. K. Ludwig, M. Bremicker, The water balance model LARSIM, in Freiburger Schriften zur Hydrologie, Band 22 (Institut für Hydrologie der Universität Freiburg, 2006). pp. 1–141Google Scholar
  50. H. Maden, C. Skotner, Adaptive state updating in real-time river flow forecasting – a combined filtering and error forecasting procedure. J. Hydrol. 308, 302–312 (2005)CrossRefGoogle Scholar
  51. R. Marty, I. Zin, C. Obled, G. Bontron, A. Djerboua, Towards real-time daily PQPF by an analog sorting approach. Application to flash flood catchments. J. Appl. Meteorol. Climatol. 51, 505–520 (2012).  https://doi.org/10.1175/JAMC-D-11-011.1CrossRefGoogle Scholar
  52. R. Maxey, M. Cranston, A. Tavendale, P. Buchanan, The use of deterministic and probabilistic forecasting in countrywide flood guidance in Scotland. Br. Hydrol. Soc. (2012).  https://doi.org/10.7558/bhs.2012.ns33CrossRefGoogle Scholar
  53. D. Meißner, S. Rademacher, Die verkehrsbezogene Wasserstandsvorhersage für die Bundeswasserstraße Rhein – Verlängerung des Vorhersagezeitraums und Steigerung der Vorhersagequalität. Korrespondenz Wasserwirtschaft, 9, 531–537 09/10 (2010)Google Scholar
  54. D. Meißner, S. Gebauer, A.H. Schumann, M. Pahlow, S. Rademacher, Analyse radarbasierter Niederschlagsprodukte als Eingangsdaten verkehrsbezogener Wasserstandsvorhersagen am Rhein. Hydrol. Wasserbewirtsch. 1, 02/2012 (2012).  https://doi.org/10.5675/HyWa_2012,1_2
  55. J. Neal, I. Villanueva, N. Wright, T. Willis, T. Fewtrell, P. Bates, How much physical complexity is needed to model flood inundation? Hydrol. Process. (2011)  https://doi.org/10.1002/hyp.8339CrossRefGoogle Scholar
  56. Ø. Langsrud, A. Frigessi, G. Høst, Pure model error for the HBV model. HYDRA note. Available from NVE, Oslo (1998a)Google Scholar
  57. Ø. Langsrud, G. Høst, T. Follestad, A. Frigessi, Quantifying uncertainty in HBV runoff forecasts by stochastic simulations. HYDRA note. Available from NVE, Oslo (1998b)Google Scholar
  58. Pagano et al., Challenges of operational river forecasting. J. Hydrometeorol. 2014; e-View  https://doi.org/10.1175/JHM-D-13-0188.1CrossRefGoogle Scholar
  59. F. Pappenberger, TIGGE and the multi-model approach in hydrology (a brief review) (2014). http://hepex.irstea.fr/tigge-and-the-multi-model-approach-in-hydrology-a-brief-scientific-review/. Last accessed 29 Apr 2014
  60. F. Pappenberger, J. Thielen, M. del Medico, The impact of weather forecast improvements on large scale hydrology: analysing a decade of forecasts of the European Flood Alert System. Hydrol. Process. 25(7) (2011).  https://doi.org/10.1002/hyp.7772,2010
  61. C. Perrin, C. Michel, V. Andréassian, Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 279, 275–289 (2003).  https://doi.org/10.1016/S0022-1694(03)00225-7CrossRefGoogle Scholar
  62. M. Renner, M.G.F. Werner, S. Rademacher, E. Sprokkereef, Verification of ensemble flow forecasts for the River Rhine. J. Hydrol. 376, 463–475 (2009).  https://doi.org/10.1016/j.jhydrol.2009.07.059CrossRefGoogle Scholar
  63. J. Roe, C. Dietz, P. Restrepo, J. Halquist, R. Hartman, R. Horwood, W. Olsen, H. Opitz, R. Shedd, E. Welles, NOAA’s Community Hydrologic Prediction System. Presented at the 2nd Joint Federal Interagency Conference in Las Vegas, June 27 – July 1, 2010. Link:http://acwi.gov/sos/pubs/2ndJFIC/Contents/7E_Roe_12_28_09.pdf
  64. H. Roux et al., A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Nat. Hazards Earth Syst. Sci. 11(9), 2567–2582 (2011)CrossRefGoogle Scholar
  65. N.R. Sælthun, The “Nordic” HBV model. Norwegian Water Resources and Energy Directorate Report No. 7 (1996)Google Scholar
  66. J. Schaake, J. Demargne, R. Hartman, M. Mullusky, E. Welles, L. Wu, H. Herr, X. Fan, D.J. Seo, Precipitation and temperature ensemble forecasts from single-value forecasts. Hydrol. Earth Syst. Sci. 4, 655–717 (2007)CrossRefGoogle Scholar
  67. Y. Seity, P. Brousseau, S. Malardel, G. Hello, P. Bernard, F. Bouttier, C. Lac, V. Masson, The AROME–France convective-scale operational model. Mon. Weather Rev. 139, 976–991 (2010)CrossRefGoogle Scholar
  68. Y. Seity, P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, V. Masson, The AROME–France convective-scale operational model. Mon. Weather Rev. 139, 976–991 (2011)CrossRefGoogle Scholar
  69. D.-J. Seo, H.D. Herr, J.C. Schaake, A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction. Hydrol. Earth Syst. Sci. 3, 1987–2035 (2006)CrossRefGoogle Scholar
  70. D. Shin, A. Schepen, T. Peatey, S. Zhou, A. MacDonald, T. Chia, J. Perkins, N. Plummer, WAFARi: a new modelling system for seasonal streamflow forecasting service of the Bureau of Meteorology, in 19th International Congress on Modelling and Simulation (MODSIM), (Perth, 2011), 12–16 Dec 2011Google Scholar
  71. W. Sittner, C. Schauss, J. Monro, Continuous hydrograph synthesis with an API-type hydrologic model. Water Resour. Res. 5(5), 1007–1022 (1969)CrossRefGoogle Scholar
  72. T. Skaugen, C. Onof, A rainfall-runoff model parameterized from GIS and runoff data. Hydrol. Process. (2013)  https://doi.org/10.1002/hyp.9968 (in press)CrossRefGoogle Scholar
  73. SPC-Allier Réglement de surveillance, de prévision et de transmission de l’Information sur les Crues (RIC) Direction Régionale de l’Environnement, de l’Aménagement et du Logement/Auvergne, 2013. Link http://www.vigicrues.ecologie.gouv.fr/ftp/RIC/RIC_SPC_AL_2013.pdf
  74. SPC-LCI Réglement de surveillance, de prévision et de transmission de l’Information sur les Crues (RIC) Direction Régionale de l’Environnement, de l’Aménagement et du Logement/Centre, 2013. Link http://www.vigicrues.ecologie.gouv.fr/ftp/RIC/RIC_SPC_LCI_2013.pdf
  75. J. Thielen, K. Bogner, F. Pappenberger, M. Kalas, M. del Medico, A. de Roo, Monthly-, medium- and short range flood warning: testing the limits of predictability. Meteorol. Appl. 16(1), 77–90 (2009)CrossRefGoogle Scholar
  76. V. Thiemig, B. Bisselink, F. Pappenberger, J. Thielen, A pan-African flood forecasting system. Hydrol. Earth Syst. Sci. Discuss. 11, 5559–5597 (2014)CrossRefGoogle Scholar
  77. N.K. Tuteja, D. Shin, R. Laugesen, U. Khan, Q. Shao, E. Wang, M. Li, H. Zheng, G. Kuczera, D. Kavetski, G. Evin, M. Thyer, A. Macdonald, T. Chia, B. Le, Experimental Evaluation of the Dynamic Seasonal Streamflow Forecasting Approach. Technical report, (Bureau of Meteorology, Canberra, 2011)Google Scholar
  78. S.J. Van Andel, R. Price, A. Lobbrecht, F. van Kruiningen, R. Mureau, W. Cordero, Framework for anticipatory water management. J. Water Resour. Plan. Manag. 140, 533–542 (2014).  https://doi.org/10.1061/(ASCE)WR.1943-5452.0000254CrossRefGoogle Scholar
  79. J.M. van der Knijff, J. Younis, A.P.J. de Roo, LISFLOOD: a GIS-based distributed model for river-basin scalewater balance and flood simulation. Int. J. Geogr. Inf. Sci. 24(2), 189–212 (2010)CrossRefGoogle Scholar
  80. B. Vehviläinen, The watershed simulation and forecasting system in the National Board of Waters and Environment. Publications of the Water and Environment Research Institute. National Board of Waters and the Environment, Finland. No. 17. (1994)Google Scholar
  81. Verkade et al., Development path of operational forecasting systems. (2014)Google Scholar
  82. B. Vincendon, V. Ducrocq, G.M. Saulnier, L. Bouilloud, K. Chancibault, F. Habets, J. Noilhan, Benefice of coupling the ISBA land surface model with a TOPMODEL hydrological model version dedicated to Mediterranean flash-floods. J. Hydrol. (Impact Factor: 2.96). 01/2010; 394, 256–266 (2010).  https://doi.org/10.1016/j.jhydrol.2010.04.012CrossRefGoogle Scholar
  83. B. Vincendon, V. Ducrocq, O. Nuissier, B. Vié, Introducing perturbation in rainfall fields for an ensemble forecasting of flash-flood. NHESS 11, 1529–1544 (2011)Google Scholar
  84. D. Viviroli, M. Zappa, J. Gurtz, R. Weingartner, An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environ. Model. Softw. 24(10), 1209–1222 (2009). doi:10.1016/j.envsoft.2009.04.001CrossRefGoogle Scholar
  85. Q.J. Wang, D.E. Robertson, Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences. Water Resour. Res. 47, W02546 (2011). doi:10.1029/2010WR009333CrossRefGoogle Scholar
  86. Q.J. Wang, D.E. Robertson, F.H.S. Chiew, A Bayesian joint probability modelling approach for seasonal forecasting of streamflows at multiple sites. Water Resour. Res. 45, W05407 (2009a).  https://doi.org/10.1029/2008WR007355CrossRefGoogle Scholar
  87. Y. Wang et al., The Central European limited area ensemble forecasting system: ALADINLAEF. RC LACE report (2009b). http://www.rclace.eu/File/Predictability/2009/laef4lace.pdf
  88. A.H. Weerts, H.C. Winsemius, J.S. Verkade, Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales). Hydrol. Earth Syst. Sci. 15, 255–265 (2011).  https://doi.org/10.5194/hess-15-255CrossRefGoogle Scholar
  89. M. Werner, M. van Dijk, J. Shellekens, Delft-FEWS: an open shell flood forecasting system, in 6th International Conference on Hydroinformatics, ed. by S.Y. Liong, K. Phoon, V. Babovic (World Scientific Publishing Company, Singapore, 2004), pp. 1205–1212CrossRefGoogle Scholar
  90. M. Werner, J. Schellekens, P. Gijsbers, M. van Dijk, O. van den Akker, K. Heynert, The delft-FEWS flow forecasting system. Environ. Model. Softw. 40, 65–77 (2013).  https://doi.org/10.1016/j.envsoft.2012.07.010CrossRefGoogle Scholar
  91. F. Wetterhall, F. Pappenberger, L. Alfieri, H.L. Cloke, J. Thielen-del Pozo, S. Balabanova, J. Daňhelka, A. Vogelbacher, P. Salamon, I. Carrasco, A.J. Cabrera-Tordera, M. Corzo-Toscano, M. Garcia-Padilla, R.J. Garcia-Sanchez, C. Ardilouze, S. Jurela, B. Terek, A. Csik, J. Casey, G. Stankūnavičius, V. Ceres, E. Sprokkereef, J. Stam, E. Anghel, D. Vladikovic, C. Alionte Eklund, N. Hjerdt, H. Djerv, F. Holmberg, J. Nilsson, K. Nyström, M. Sušnik, M. Hazlinger, M. Holubecka, HESS opinions “Forecaster priorities for improving probabilistic flood forecasts”. Hydrol. Earth Syst. Sci. 17, 4389–4399 (2013).  https://doi.org/10.5194/hess-17-4389-2013CrossRefGoogle Scholar
  92. L. Wu, D.-J. Seo, J. Demargne, J.D. Brown, S. Cong, J. Schaake, Generation of ensemble precipitation forecast from single-valued quantitative precipitation forecast via meta-Gaussian distribution models. J. Hydrol. 399(3–4), 281–298 (2011)CrossRefGoogle Scholar
  93. J. Younis, M.H. Ramos, J. Thielen, EFAS forecasts for the March-April 2006 flood in the Czech part of the Elbe River Basin – a case study. Atmos. Sci. Lett. 9(2), 88–94 (2008)CrossRefGoogle Scholar
  94. I. Zalachori, M.H. Ramos, R. Garçon, T. Mathevet, J. Gailhard, Statistical processing of forecasts for hydrological ensemble prediction: a comparative study of different bias correction strategies. Adv. Sci. Res. 8, 135–141 (2012)CrossRefGoogle Scholar
  95. M. Zappa, M.W. Rotach, M. Arpagaus, M. Dorninger, C. Hegg, A. Montani, R. Ranzi, F. Ament, U. Germann, G. Grossi, S. Jaun, A. Rossa, S. Vogt, A. Walser, J. Wehrhan, C. Wunram, MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems. Atmos. Sci. Lett. 2, 80–87 (2008).  https://doi.org/10.1002/asl.183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Florian Pappenberger
    • 1
  • Thomas C. Pagano
    • 8
  • J. D. Brown
    • 12
  • Lorenzo Alfieri
    • 22
  • D. A. Lavers
    • 39
  • L. Berthet
    • 34
  • F. Bressand
    • 25
  • Hannah L. Cloke
    • 14
    • 15
  • M. Cranston
    • 35
  • J. Danhelka
    • 30
  • J. Demargne
    • 21
  • N. Demuth
    • 26
  • C. de Saint-Aubin
    • 18
  • P. M. Feikema
    • 8
  • M. A. Fresch
    • 13
  • R. Garçon
    • 16
  • A. Gelfan
    • 10
  • Y. He
    • 6
  • Y. -Z. Hu
    • 5
  • B. Janet
    • 18
  • N. Jurdy
    • 19
  • P. Javelle
    • 20
  • L. Kuchment
    • 10
  • Y. Laborda
    • 25
  • E. Langsholt
    • 28
  • M. Le Lay
    • 16
  • Z. J. Li
    • 5
  • F. Mannessiez
    • 25
  • A. Marchandise
    • 24
  • R. Marty
    • 36
  • D. Meißner
    • 5
  • D. Manful
    • 6
  • D. Organde
    • 21
  • V. Pourret
    • 23
  • Silke Rademacher
    • 5
  • Maria-Helena Ramos
    • 17
  • D. Reinbold
    • 36
  • S. Tibaldi
    • 11
  • P. Silvano
    • 37
  • Peter Salamon
    • 33
  • D. Shin
    • 8
  • C. Sorbet
    • 23
  • Eric Sprokkereef
    • 3
  • V. Thiemig
    • 33
  • Narendra Kumar Tuteja
    • 38
  • S. J. van Andel
    • 9
  • Jan S. Verkade
    • 2
    • 3
    • 4
  • B. Vehviläinen
    • 27
  • A. Vogelbacher
    • 29
  • Fredrik Wetterhall
    • 40
  • Massimiliano Zappa
    • 7
  • R. E. Van der Zwan
    • 31
  • Jutta Thielen-del Pozo
    • 32
  1. 1.European Centre for Medium-Range Weather Forecasts, ECMWFReadingUK
  2. 2.DeltaresDelftThe Netherlands
  3. 3.Ministry of Infrastructure and the Environment, Water Management Centre of the Netherlands, River Forecasting ServiceLelystadThe Netherlands
  4. 4.Delft University of TechnologyDelftThe Netherlands
  5. 5.German Federal Institute of Hydrology (BfG)KoblenzGermany
  6. 6.Tyndall Centre for Climate Change Research, School of Environmental SciencesUniversity of East AngliaNorwichUK
  7. 7.Swiss Federal Institute for Forest, Snow and Landscape Research WSLZurichSwitzerland
  8. 8.Bureau of MeteorologyMelbourneAustralia
  9. 9.UNESCO-IHE Institute for Water EducationDelftThe Netherlands
  10. 10.Water Problems Institute of Russian Academy of Sciences (WPI RAS)MoscowRussia
  11. 11.ARPA Emilia RomagnaBolognaItaly
  12. 12.Hydrologic Solutions LimitedSouthamptonUK
  13. 13.Office of Water Prediction, U.S. National Weather ServiceSilver SpringUSA
  14. 14.Department of MeteorologyReading UniversityReadingUK
  15. 15.Department of Environmental Sciences and GeographyReading UniversityReadingUK
  16. 16.EDF DTGGrenobleFrance
  17. 17.IRSTEAAntonyFrance
  18. 18.Service Central d’Hydrométéorologie et d’Appui à la Prévision des Inondations (SCHAPI)ToulouseFrance
  19. 19.Service de Prévision des Crues Meuse-MoselleMetzFrance
  20. 20.Irstea, OHAX Hydrology UnitAix-en-ProvenceFrance
  21. 21.HYDRIS HydrologieSaint Mathieu de TréviersFrance
  22. 22.Directorate for Space, Security and Migration, European Commission – Joint Research CentreIspraItaly
  23. 23.Météo-FranceToulouseFrance
  24. 24.Service de Prévision des Crues Méditerranée OuestCarcassonneFrance
  25. 25.Service de Prévision des Crues Grand DeltaNîmesFrance
  26. 26.Landesamt für Umwelt, Rhineland PalatinateMainzGermany
  27. 27.Finish Environment InstituteHelsinkiFinland
  28. 28.Ministry of Petroleum and Energy, Norwegian Water Resources and Energy Directorate, Hydrology Department (NVE)OsloNorway
  29. 29.Bayerisches Landesamt für UmweltAugsburgGermany
  30. 30.Czech Hydrometeorological InstitutePragueCzech Republic
  31. 31.Principal Water Board of RijnlandLeidenThe Netherlands
  32. 32.European Commission, Joint Research CentreIspraItaly
  33. 33.European Commission, Joint Research CentreIspraItaly
  34. 34.Loire river Flood Forecasting CentreOrléansItaly
  35. 35.RAB Consultants/University of DundeeStirlingItaly
  36. 36.Loire-Cher-Indre Flood Forecasting CentreOrléansFrance
  37. 37.ARPA Emilia RomagnaParmaItaly
  38. 38.Bureau of MeteorologyCanberraAustralia
  39. 39.European Centre for Medium Range Weather ForecastsReadingUK
  40. 40.Forecast Department, European Centre for Medium-Range Weather ForecastsReadingUK

Personalised recommendations