Advertisement

Present and Future Requirements for Using and Communicating Hydrometeorological Ensemble Prediction Systems for Short-, Medium-, and Long-Term Applications

  • Geoff PegramEmail author
  • Damien Raynaud
  • Eric Sprokkereef
  • Martin Ebel
  • Silke Rademacher
  • Jonas Olsson
  • Cristina Alionte-Eklund
  • Barbro Johansson
  • Göran Lindström
  • Henrik Spångmyr
Reference work entry

Abstract

This chapter provides representative examples for using and communicating hydrometeorological ensemble prediction systems (HEPS) for short-, medium-, and long-term applications. The needs of the specific end users in disaster management, flood forecasting centers, and water management are highlighted.

In the first section, the requirements are presented for a nowcasting system based on radar data designed to provide sufficient lead time for decision makers responsible for urban areas. The generation of rainfall ensembles from radar measurements is described using the so-called string of beads methodology. The aspects required by decision makers for flood management are followed by the technical set-up and constraints.

The second section illustrates how short-term HEPS can contribute to increasing the predictability of flash flood events on a regional scale with complementary indicators to higher-resolution local information systems based on short-term forecasts and observations.

In the third section, the benefits of hydrological ensembles are elaborated for flood forecasting and shipping for a well-controlled, trans-national river basin such as the river Rhine. For several years, medium-range ensemble prediction systems have been explored for flood forecasting in medium to large river basins such as the Rhine.

The last section describes the requirements of HEPS for water management and how they are used at the example of hydropower in Sweden. In snow-dominated hydrological regimes such as in Scandinavia, reservoirs need to be carefully managed in order to have enough capacity for storing spring flood volume, while keeping enough water for securing the required power generation. The chapter concludes with the strengths and the limitations of HEPS for various applications.

Keywords

Ensemble prediction systems Radar Trans-national river basins Decision support 

References

  1. L. Alfieri, D. Velasco, J. Thielen, Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events. Adv. Geosci. 29, 69–75 (2011)CrossRefGoogle Scholar
  2. L. Alfieri, J. Thielen, F. Pappenberger, Ensemble hydro-meteorological simulation for flash flood early detection in southern Switzerland. J. Hydrol. 424–425, 143–153 (2012)CrossRefGoogle Scholar
  3. J. Andréasson, S.-S. Hellström, J. Rosberg, S. Bergström, Summary of climate change maps of the Swedish water resources – background material for the Swedish Commission on Climate and Vulnerability, SMHI Hydrology No 106, SMHI, 601 76 Norrköping, 15 pp (in Swedish) (2007)Google Scholar
  4. B. Arheimer, G. Lindström, J. Olsson, A systematic review of sensitivities in the Swedish flood-forecasting system. Atmos. Res. 100, 275–284 (2011).  https://doi.org/10.1016/j.atmosres.2010.09.013CrossRefGoogle Scholar
  5. M. Arpagaus et al., MAP D-PHASE: demonstrating forecast capabilities for flood events in the Alpine region. Veröff. MeteoSchweiz 78, 75 pp (2009)Google Scholar
  6. A. Atencia, T. Rigo, A. Sairouni, J. Moré, J. Bech, E. Vilaclara, J. Cunillera, M.C. Llasat, L. Garrote, Improving QPF by blending techniques at the Meteorological Service of Catalonia. Nat. Hazards Earth Syst. Sci. 10, 1443–1455 (2010)CrossRefGoogle Scholar
  7. A. Bab-Hadiashar, D. Suter, R. Jarvis, 2-D motion extraction using an image interpolation technique. SPIE 2564, 271–281 (1996)Google Scholar
  8. M. Berenguer, D. Sempere-Torres, G. Pegram, SBMcast – an ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. J. Hydrol. (2011).  https://doi.org/10.1016/j.jhydrol.2011.04.033CrossRefGoogle Scholar
  9. M. Bergstrand, S.-S. Asp, G. Lindström, Nation-wide hydrological statistics for Sweden with high resolution using the hydrological model S-HYPE. Hydrol. Res. 45, 349 (2014)CrossRefGoogle Scholar
  10. S. Bergström, The application of a simple rainfall-runoff model to a catchment with incomplete data coverage. SMHI, Notiser och preliminära rapporter, ser. Hydrologi No. 26. IHD-Report (1972)Google Scholar
  11. S. Bergström, A. Forsman, Development of a conceptual deterministic rainfall-runoff model. Nord. Hydrol. 4, 147–170 (1973)CrossRefGoogle Scholar
  12. R. Bornstein, Q. Lin, Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos. Environ. 34(3), 507–516 (2000)CrossRefGoogle Scholar
  13. R. Buizza, A. Hollingsworth, F. Lalaurette, A. Ghelli, Probabilistic predictions of precipitation using the ECMWF Ensemble Prediction System. Weather Forecast. 14, 168–189 (1999)CrossRefGoogle Scholar
  14. R. Buizza et al., The new ECMWF variable resolution ensemble prediction system (VAREPS): methodology and validation. ECMWF Tech. Memo. No. 499 (2006)Google Scholar
  15. R. Buizza et al., The new ECMWF VAREPS (variable resolution ensemble prediction system). Q. J. Roy. Meteorol. Soc. 133, 681–695 (2007)CrossRefGoogle Scholar
  16. T. Camus, H.H. Bulthoff, Real-time optical flow extended in time. Max-Planck-Institute. Technical report No. 13 (1995)Google Scholar
  17. CHR, Website International Commission for the Hydrology of the Rhine basin. The length of the Rhine (2010)Google Scholar
  18. H.L. Cloke, F. Pappenberger, Ensemble flood forecasting: a review. J. Hydrol. 375, 613–626 (2009)CrossRefGoogle Scholar
  19. A.N. Clothier, G.G.S. Pegram, Space-time modeling of rainfall using the String of Beads model: integration of radar and raingauge data. Water Research Commission Report, No. 1010/1/02 (2002). ISBN 1 86845 835 0Google Scholar
  20. M. Ebel, J.L.V. Beckers, Operational river and coastal water level forecast using Bayesian Model averaging. DELTARES (Delft) (2010). Nr. 1200379-003Google Scholar
  21. A. Gelb, Applied Optimal Estimation (MIT Press, Cambridge, MA, 1974)Google Scholar
  22. U. Germann, M. Berenguer, D. Sempere-Torres, M. Zappa, REAL – ensemble radar precipitation estimation for hydrology in a mountainous region. Q. J. Roy. Meteorol. Soc. 135, 445–456 (2009).  https://doi.org/10.1002/qj.375CrossRefGoogle Scholar
  23. R. Hannesen, An enhanced surface rainfall algorithm for radar data. Progress report for MUSIC. European Commission contract No. EVK1-CT-2000-00058 (2002)Google Scholar
  24. A.P. Hurford, S.J. Priest, D.J. Parker, D.M. Lumbroso, The effectiveness of extreme rainfall alerts in predicting surface water flooding in England and Wales. Int. J. Climatol. 32, 1768–1774 (2012).  https://doi.org/10.1002/joc.2391CrossRefGoogle Scholar
  25. International Federation of Red Cross and Red Crescent Societies, Word Disaster Report 2009; Focus on Early Warning, Early Action (ATAR Roto Presse, Satigny/Vernier, 2009)Google Scholar
  26. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)CrossRefGoogle Scholar
  27. H. Kalweit et al., Der Rhein unter den Einfluss des Menschen – Ausbau, Schiffahrt, Wasserwirtschaft. CHR report No I-11 (in German) (1993)Google Scholar
  28. K. Kober, G.C. Craig, C. Keil, A. Dörnbrack, Blending a probabilistic nowcasting method with a high-resolution numerical weather prediction ensemble for convective precipitation forecasts. Q. J. Roy. Meteorol. Soc. 138, 755–768 (2012).  https://doi.org/10.1002/qj.939CrossRefGoogle Scholar
  29. H. Kusaka, K. Nawata, A. Suzuki-Parker, Y. Takane, N. Furuhashi, Mechanism of precipitation increase with urbanization in Tokyo as revealed by ensemble climate simulations. J. Appl. Meteorol. Climatol. 53(4), 824–839 (2014)CrossRefGoogle Scholar
  30. H. Leijnse, R. Uijlenhoet, J.N.M. Stricker, Rainfall measurement using radio links from cellular communication networks. Water Resour. Res. 43, W03201 (2007).  https://doi.org/10.1029/2006WR005631CrossRefGoogle Scholar
  31. Z. Liang et al., Application of Bayesian model averaging approach to multimodel ensemble hydrologic forecasting. J. Hydrol. Eng. 18(11), 1426–1436 (2013)CrossRefGoogle Scholar
  32. K. Liechti, M. Zappa, F. Fundel, U. Germann, Probabilistic evaluation of ensemble discharge nowcasts in two nested Alpine basins prone to flash floods. Wiley Online Libr. (2012).  https://doi.org/10.1002/hyp.9458CrossRefGoogle Scholar
  33. S. Liguori, M.A. Rico-Ramirez, A.N.A. Schellart, A.J. Saul, Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmos. Res. 103, 80–95 (2012)CrossRefGoogle Scholar
  34. G. Lindström, B. Johansson, M. Persson, M. Gardelin, S. Bergström, Development and test of the distributed HBV-96 model. J. Hydrol. 201, 272–288 (1997)CrossRefGoogle Scholar
  35. G. Lindström, C.P. Pers, R. Rosberg, J. Strömqvist, B. Arheimer, Development and test of the HYPE (Hydrological Predictions for the Environment) model – a water quality model for different spatial scales. Hydrol. Res. 41(3–4), 295–319 (2010)CrossRefGoogle Scholar
  36. M.C. Llasat, M. Llasat-Botija, M.A. Prat, F. Porcú, C. Price, A. Mugnai, K. Lagouvardos, V. Kotroni, D. Katsanos, S. Michaelides, Y. Yair, K. Savvidou, K. Nicolaides, High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv. Geosci. 23, 1–9 (2010)CrossRefGoogle Scholar
  37. P. Lopez et al., Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the Upper Severn River: a comparison. Geophys. Res. Abstr. 16, EGU2014-14591 (2014). EGU General Assembly 2014Google Scholar
  38. C. Marsigli, F. Boccanera, A. Montani, T. Paccagnella, The COSMO-LEPS mesoscale ensemble system: validation of the methodology and verification. Nonlinear Proc. Geoph. 12, 527–536 (2005)CrossRefGoogle Scholar
  39. J. Olsson, G. Lindström, Evaluation and calibration of operational hydrological ensemble forecasts in Sweden. J. Hydrol. 350, 14–24 (2008).  https://doi.org/10.1016/j.jhydrol.2007.11.010CrossRefGoogle Scholar
  40. J. Olsson, C.B. Uvo, K. Foster, W. Yang, Technical note: initial assessment of a multi-method approach to spring flood forecasting in Sweden, Hydrol. Earth System Sci. 20, 1–9 (2016).  https://doi.org/10.5194/hess-20-1-2016CrossRefGoogle Scholar
  41. T.N. Palmer, F. Molteni, R. Mureau, R. Buizza, P. Chapelet, J. Tribbia, Ensemble prediction, in Proceedings of 1992 ECMWF Seminar: Validation of Models Over Europe (ECMWF, Reading, 1993), pp. 21–66Google Scholar
  42. L. Panziera, U. German, M. Babella, P.V. Mandapaka, NORA – nowcasting of orographic rainfall by means of analogues. Q. J. Roy. Meteorol. Soc. 137, 2106 (2011). ISSN 0035-9009CrossRefGoogle Scholar
  43. I.G. Pechlivanidis, T. Bosshard, H. Spångmyr, G. Lindström, G. Gustafsson, B. Arheimer, Uncertainty in the Swedish operational hydrological forecasting systems, in Proceedings of the Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM2014), University of Liverpool, Liverpool, 13–16 July 2014 (2014)Google Scholar
  44. G.G.S. Pegram, A continuous streamflow model. J. Hydrol. 47, 65–89 (1980)CrossRefGoogle Scholar
  45. G.G.S. Pegram, A.N. Clothier, High resolution space-time modelling of rainfall: the “String of Beads” model. J. Hydrol. 241, 26–41 (2001)CrossRefGoogle Scholar
  46. G.G.S. Pegram, D.S. Sinclair, A linear catchment model for real time flood forecasting. Water Research Commission Report, No. 1005/1/02 (2002)Google Scholar
  47. D. Penna, H.J. Tromp-van Meerveld, A. Gobbi, M. Borga, G. Dalla Fontana, The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 15, 689–702 (2011)CrossRefGoogle Scholar
  48. D. Raynaud, J. Thielen del Pozo, P. Salamon, P.A. Burek, S. Anquetin, L. Alfieri, A dynamic runoff co-efficient to improve flash flood early warning in Europe: evaluation on the 2013 Central European floods in Germany. Meteorol. Appl. 22(3), 410–418 (2014)CrossRefGoogle Scholar
  49. M. Renner, M.G.F. Werner, S. Rademacher, E. Sprokkereef, Verification of ensemble flow forecasts for the River Rhine. J. Hydrol. 376, 463 (2009)CrossRefGoogle Scholar
  50. A. De Roo, B. Gouweleeuw, J. Thielen, P. Bates, A. Hollingsworth et al., Development of a European Flood Forecasting System. Int. J. River Basin Manag. 1(1), 49–59 (2003)CrossRefGoogle Scholar
  51. A. Rossa, G. Haase, C. Keil, P. Alberoni, S. Ballard, J. Bech, U. Germann, M. Pfeifer, K. Salonen, Propagation of uncertainty from observing systems into NWP: COST-731 Working Group 1. Atmos. Sci. Lett. 2, 145–152 (2010)CrossRefGoogle Scholar
  52. M.W. Rotach et al., MAP D-PHASE: real-time demonstration of weather forecast quality in the Alpine region. Bull. Am. Meteorol. Soc. 90, 1321–1336 (2009).  https://doi.org/10.1175/2009BAMS2776.1CrossRefGoogle Scholar
  53. K. Savvidou, S. Michaelides, K.A. Nicolaides, P. Constantinides, Presentation and preliminary evaluation of the operational Early Warning System in Cyprus. Nat. Hazards Earth Syst. Sci. 9, 1213–1219 (2009).  https://doi.org/10.5194/nhess-9-1213-2009CrossRefGoogle Scholar
  54. J. Schaake, K. Franz, A. Bradley, R. Buizza, The Hydrological Ensemble Prediction EXperiment (HEPEX). Hydrol. Earth Syst. Sci. Discuss. 3, 3321–3332 (2006)CrossRefGoogle Scholar
  55. A.W. Seed, A dynamic and spatial scaling approach to advection forecasting, in Proceedings of the Fifth International Symposium on Hydrological Applications of Weather Radar – Radar Hydrology, Kyoto, 2001Google Scholar
  56. A.W. Seed, R. Srikanthan, M. Menabde, A space and time model for design storm rainfall. J. Geophys. Res. 100(D21), 31623–31630 (1999)CrossRefGoogle Scholar
  57. K. Stephan, S. Klink, C. Schraff, Assimilation of radar-derived rain rates into the convective-scale model COSMO-DE at DWD. Q. J. Roy. Meteorol. Soc. 134, 1315–1326 (2008).  https://doi.org/10.1002/qj.269CrossRefGoogle Scholar
  58. J. Strömqvist, B. Arheimer, J. Dahné, C. Donnelly, G. Lindström, Water and nutrient predictions in ungauged basins: set-up and evaluation of a model at the national scale. Hydrol. Sci. J. 57(2), 229–247 (2012)CrossRefGoogle Scholar
  59. J. Thielen, A. Gadian, Influence of different wind directions in relation to topography on the outbreak of convection in Northern England. Ann. Geophys. 14(10), 1078–1087 (1996)CrossRefGoogle Scholar
  60. J. Thielen, A. Gadian, Influence of topography and urban heat island effects on the outbreak of convective storms under unstable meteorological conditions: a numerical study. Meteorol. Appl. 4(2), 139–149 (1997)CrossRefGoogle Scholar
  61. J. Thielen, W. Wobrock, P. Mestayer, J.-D. Creutin, A. Gadian, The influence of the lower boundary on convective rainfall development; a sensitivity study. Atmos. Res. 54, 15–39 (2000)CrossRefGoogle Scholar
  62. E. Todini, Mutually interactive state/parameter estimation (MISP), in Application of Kalman Filter to Hydrology, Hydraulics and Water Resources, ed. by C.-L. Chiu (University of Pittsburg, Pittsburgh, 1978)Google Scholar
  63. M.S. Tracton, E. Kalnay, Operational ensemble prediction at the National Meteorological Center: practical aspects. Weather Forecast. 8, 379–398 (1993)CrossRefGoogle Scholar
  64. University Corporation for Atmospheric Research (UCAR), Flash Flood Early Warning System Reference Guide 2010 (2010), http://www.meted.ucar.edu/communities/hazwarnsys/ffewsrg/FF_EWS.frontmatter.pdf. ISBN 978-0-615-37421-5
  65. J. Verkade et al., Real-time hydrologic probability forecasting using ensemble dressing, with application to river Rhine. Geophys. Res. Abstr. 15, EGU2013-10763 (2013). EGU General Assembly 2013Google Scholar
  66. G. Villarini, W.F. Krajewski, A.A. Ntelekos, K.P. Georgakakos, J.A. Smith, Towards probabilistic forecasting of flash floods: the combined effects of uncertainty in radar-rainfall and flash flood guidance. J. Hydrol. 394(1–2), 275–284 (2010)CrossRefGoogle Scholar
  67. F. Weber, D. Garen, A. Gobena, Invited commentary: themes and issues from the workshop “Operational River Flow and Water Supply Forecasting”. Can. Water Resour. J. 37, 151–161 (2012).  https://doi.org/10.4296/cwrj2012-953CrossRefGoogle Scholar
  68. A.H. Weerts et al., Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales). Hydrol. Earth Syst. Sci. 15, 255–265 (2011)CrossRefGoogle Scholar
  69. P. Young, Recursive Estimation and Time Series Analysis (Springer, Berlin, 1984)CrossRefGoogle Scholar
  70. J. Younis, S. Anquetin, J. Thielen, The benefit of high-resolution operational weather forecasts for flash flood warning. Hydrol. Earth Syst. Sci. 12, 1039–1051 (2008)CrossRefGoogle Scholar
  71. M. Zappa, K.J. Beven, M. Bruen, A.S. Cofino, K. Kok, E. Martin, P. Nurmi, B. Orfila, E. Roulin, K. Schroter, A. Seed, J. Szturc, B. Vehvilainen, U. Germann, A. Rossa, Propagation of uncertainty from observing systems and NWP into hydrological models: COST-731 Working Group 2. Atmos. Sci. Lett. 11, 83–91 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Geoff Pegram
    • 1
    Email author
  • Damien Raynaud
    • 2
  • Eric Sprokkereef
    • 3
  • Martin Ebel
    • 4
  • Silke Rademacher
    • 5
  • Jonas Olsson
    • 6
  • Cristina Alionte-Eklund
    • 6
  • Barbro Johansson
    • 6
  • Göran Lindström
    • 6
  • Henrik Spångmyr
    • 6
  1. 1.Satellite Applications and Hydrology Group, School of Civil Engineering, Surveying and Construction ManagementUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Universite Joseph FourierGrenobleFrance
  3. 3.Ministry of Infrastructure and the EnvironmentWater Management Centre of the Netherlands, River Forecasting ServiceLelystadThe Netherlands
  4. 4.Bundesamt für UmweltIttigenSwitzerland
  5. 5.German Federal Institute of Hydrology (BfG)KoblenzGermany
  6. 6.Swedish Meteorological and Hydrological InstituteNorrköpingSweden

Personalised recommendations