Advertisement

Motivation and Overview of Hydrological Ensemble Post-processing

  • Thomas M. Hopson
  • Andy Wood
  • Albrecht H. Weerts
Reference work entry

Abstract

In this introduction to this chapter on hydrologic post-processing, we discuss the different but complementary directives that the “art” of post-processing must satisfy: the particular directive defined by specific applications and user needs; versus the general directive of making any ensemble member indistinguishable from the observations. Also discussed are the features of hydrologic post-processing that are similar and separate from meteorological post-processing, providing a tie-in to early chapters in this handbook. We also provide an overview of the different aspects the practitioner should keep in mind when developing and implementing algorithms to adequately “correct and calibrate” ensemble forecasts: when forecast uncertainties should be characterized separately versus maintaining a “lumped” approach; additional aspects of hydrological ensembles that need to be maintained to satisfy additional user requirements, such as temporal covariability in the ensemble time series, an overview of the different post-processing approaches being used in practice and in the literature, and concluding with a brief overview of more specific requirements and challenges implicit in the “art” of post-processing.

Keywords

Post-processing Conditional forecast Regression Estimation Uncertainty Systematic error Bias correction Streamflow forecast Hydrologic modeling Covariance 

References

  1. F. Atger, The skill of ensemble prediction systems. Mon. Weather Rev. 127(9), 1941–1953 (1999)CrossRefGoogle Scholar
  2. J. Bremnes, Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mon. Weather Rev. 132, 338–347 (2004)CrossRefGoogle Scholar
  3. R. Buizza, D.S. Richardson, T.N. Palmer, Benefits of increased resolution in the ECMWF ensemble system and comparison with poor-man’s ensembles. Q. J. R. Meteorol. Soc. 129(589), 1269–1288 (2003)CrossRefGoogle Scholar
  4. M. Clark, S. Gangopadhyay, L. Hay, B. Rajagopalan, R. Wilby, The Schaake shuffle: a method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeorol. 5, 243–262 (2004)CrossRefGoogle Scholar
  5. V. Fortin, A.-C. Favre, M. Saïd, Probabilistic forecasting from ensemble prediction systems: improving upon the best-member method by using a different weight and dressing kernel for each member. Q. J. R. Meteorol. Soc. 132(617), 1349–1369 (2006)CrossRefGoogle Scholar
  6. D.C. Garen, Improved techniques in regression-based streamflow volume forecasting. J. Water Resour. Plan. Manage. 118(6), 654–670 (1992)CrossRefGoogle Scholar
  7. H.R. Glahn, D.A. Lowry, The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteorol. 11, 1203–1211 (1972)CrossRefGoogle Scholar
  8. T. Gneiting, A.-E. Raftery, A.-H. Westveld, T. Goldman, Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133(5), 1098–1118 (2005)CrossRefGoogle Scholar
  9. C.W.J. Granger, P. Newbold, Forecasting Economic Time Series (Academic, Orlando, 1986)Google Scholar
  10. T.M. Hamill, S.J. Colucci, Verification of Eta–RSM short-range ensemble forecasts. Mon. Weather Rev. 125(6), 1312–1327 (1997)CrossRefGoogle Scholar
  11. J.A. Hanley, Simple and multiple linear regression: sample size considerations. J. Clin. Epidemiol. 79, 112–119 (2016).  https://doi.org/10.1016/j.jclinepi.2016.05.014CrossRefGoogle Scholar
  12. J. Hoeting, D. Madigan, A. Raftery, C. Volinsky, Bayesian model averaging: a tutorial (with discussion). Stat. Sci. 14(4), 382–417 (1999). Correction: vol. 15, pp. 193–195Google Scholar
  13. T.M. Hopson, Operational Flood-Forecasting for Bangladesh. Ph.D. thesis, University of Colorado, 2005, 225ppGoogle Scholar
  14. T.M. Hopson, P.J. Webster, A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: forecasting severe floods of 2003–07. J. Hydrometeorol. 11(3), 618–641 (2010)CrossRefGoogle Scholar
  15. F. Hoss, P.S. Fischbeck, Performance and robustness of probabilistic river forecasts computed with quantile regression based on multiple independent variables. Hydrol. Earth Syst. Sci. 19 3969–3990 (2015).  https://doi.org/10.5194/hess-19-3969-2015CrossRefGoogle Scholar
  16. G.T. Knofczynski, D. Mundfrom, Sample sizes when using multiple linear regression for prediction. Educ. Psychol. Meas. 68(3), 431–442 (2008).  https://doi.org/10.1177/0013164407310131CrossRefGoogle Scholar
  17. T.N. Krishnamurti, C.M. Kishtawal, T.E. LaRow, D.R. Bachiochi, Z. Zhang, C.E. Williford, … S. Surendran, Improved weather and seasonal climate forecasts from multimodel superensemble. Science 285(5433), 1548–1550 (1999)CrossRefGoogle Scholar
  18. E.O. Ogundimu, D.G. Altman, G.S. Collins, Adequate sample size for developing prediction models is not simply related to events per variable. J. Clin. Epidemiol. 76, 175–182 (2016).  https://doi.org/10.1016/j.jclinepi.2016.02.031CrossRefGoogle Scholar
  19. S. Opitz-Stapleton, S. Gangopadhyay, B. Rajagopalan, Generating streamflow forecasts for the Yakima River Basin using large-scale climate predictors. J. Hydrol. 341(3–4), 131–143 (2007).  https://doi.org/10.1016/j.jhydrol.2007.03.024CrossRefGoogle Scholar
  20. T.C. Pagano, D.C. Garen, T.R. Perkins, P.A. Pasteris, Daily updating of operational statistical seasonal water supply forecasts for the Western U.S. J. Am. Water Resour. Assoc. 45(3), 767–778 (2009).  https://doi.org/10.1111/j.1752-1688.2009.00321.xCrossRefGoogle Scholar
  21. T.N. Palmer, Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys. 63(2), 71 (2000)CrossRefGoogle Scholar
  22. S.K. Regonda, B. Rajagopalan, M. Clark, E. Zagona, A multimodel ensemble forecast framework: application to spring seasonal flows in the Gunnison River Basin. Water Resour. Res. 42(9), 1–14 (2006).  https://doi.org/10.1029/2005WR004653
  23. M.-S. Roulston, L.-A. Smith, Combining dynamical and statistical ensembles. Tellus 55A(1), 16–30 (2003)CrossRefGoogle Scholar
  24. D. Rousseau, P. Chapelet, A test of the Monte-Carlo method using the WMO/CAS Intercomparison Project data, in Report of the Second Session of the CAS Working Group on Short-and Medium-Range Weather Prediction Research. WMO/TD 91, PSMP Rep. Series 18 (1985), 114ppGoogle Scholar
  25. A. Sankarasubramanian, U. Lall, Flood quantiles in a changing climate: seasonal forecasts and causal relations. Water Resour. Res. 39(5), 1134 (2003).  https://doi.org/10.1029/2002WR001593CrossRefGoogle Scholar
  26. R. Schefzik, T.L. Thorarinsdottir, T. Gneiting, Uncertainty quantification in complex simulation models using ensemble copula coupling. Statistical Science 48, 616–640 (2013)CrossRefGoogle Scholar
  27. F.A. Souza Filho, U. Lall, Seasonal to interannual ensemble streamflow forecasts for Ceara, Brazil: applications of a multivariate, semiparametric algorithm. Water Resour. Res. 39(11), 1307 (2003).  https://doi.org/10.1029/2002WR001373CrossRefGoogle Scholar
  28. G.A. Tootle, A.K. Singh, T.C. Piechota, I. Farnham, Long lead-time forecasting of U.S. streamflow using partial least squares regression. J. Hydrol. Eng. 12, 442–451 (2007)CrossRefGoogle Scholar
  29. J.S. Verkade, J.D. Brown, F. Davids, P. Reggiani, A.H. Weerts, Estimating predictive hydrological uncertainty by dressing deterministic and ensemble forecasts; a comparison, with application to Meuse and Rhine. J. Hydrol. 555, 257–277 (2017).  https://doi.org/10.1016/j.jhydrol.2017.10.024CrossRefGoogle Scholar
  30. D.S. Wilks, Statistical Methods in the Atmospheric Sciences (Academic/Elsevier, 2011)Google Scholar
  31. A.W. Wood, D.P. Lettenmaier, An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett. 35, L14401 (2008).  https://doi.org/10.1029/2008GL034648CrossRefGoogle Scholar
  32. A.W. Wood, J.C. Schaake, Correcting errors in streamflow forecast ensemble mean and spread. J. Hydrometeorol. 9, 132–148 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thomas M. Hopson
    • 1
  • Andy Wood
    • 2
  • Albrecht H. Weerts
    • 3
    • 4
  1. 1.Research Applications LaboratoryNational Center for Atmospheric ResearchBoulderUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Operational Water Management, Inland Water Systems, DeltaresDelftThe Netherlands
  4. 4.Hydrology and Quantitative Water Management Group, Wageningen University and ResearchWageningenThe Netherlands

Section editors and affiliations

  • Andy Wood
    • 1
  • Thomas Hopson
    • 2
  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.Research Applications Laboratory, National Center for Atmospheric ResearchColoradoUSA

Personalised recommendations