Advertisement

Land Surface Hydrological Models

  • Michael B. EkEmail author
Reference work entry

Abstract

The details of land-surface models (LSMs) are presented here from the perspective of providing the proper boundary condition to and interaction with a “parent” atmospheric model. Topics include atmospheric forcing to LSMs, land data sets, surface-layer turbulence, surface fluxes and energy and water budgets, land-surface physics, and the role of the land states and surface fluxes in local land-atmosphere interaction. Connections of LSMs with hydrological models (e.g., saturated zone or groundwater, and streamflow or river-routing) and land data assimilation are outside the scope of this chapter.

Keywords

Land-surface model Land-atmosphere interaction 

References

  1. G. Al Nakshabandi, H. Kohnke, Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agric. Meteorol. 2, 271–279 (1965)CrossRefGoogle Scholar
  2. M. Barlage, X. Zeng, H. Wei, K.E. Mitchell, A global 0.05 maximum albedo dataset of snow-covered land based on MODIS observations. Geophys. Res. Lett. 32(17), 8851 (2005).  https://doi.org/10.1029/2005GL022881CrossRefGoogle Scholar
  3. A.C.M. Beljaars, F.C. Bosveld, Cabauw data for the validation of land surface parameterization schemes. J. Clim. 10, 1172–1193 (1997)CrossRefGoogle Scholar
  4. A.C.M. Beljaars, A.A.M. Holtslag, Flux parmeterization over land surfaces for atmospheric models. J. Appl. Meteorol. 30, 327–341 (1991)CrossRefGoogle Scholar
  5. A.K. Betts, Non-precipitating cumulus convection and its parameterization. Q. J. R. Meteorol. Soc. 99, 178–196 (1973)CrossRefGoogle Scholar
  6. A. Boone, P. Etchevers, An inter-comparison of three snow schemes of varying complexity coupled to the same land-surface model: Local scale evaluation at an Alpine site, J. Hydrometeorol. 2, 374–394 (2001)CrossRefGoogle Scholar
  7. A. Boone, V. Masson, T. Meyers, J. Noilhan, The influence of the inclusion of soil freezing on simulations by a soil-vegetation-atmosphere transfer scheme. J. Appl. Meteorol. 39, 1544–1569 (2000)CrossRefGoogle Scholar
  8. J.A. Businger, J.C. Wyngaard, Y. Izumi, E.F. Bradley, Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181–189 (1971)CrossRefGoogle Scholar
  9. S. Chang, D. Hahn, C.-H. Yang, D. Norquist, M. Ek, Validation study of the CAPS model land surface scheme using the 1987 Cabauw/PILPS dataset. J. Appl. Meteorol. 38, 405–422 (1999)CrossRefGoogle Scholar
  10. F. Chen, K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q.Y. Duan, M. Ek, A. Betts, Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. 101, 7251–7268 (1996)CrossRefGoogle Scholar
  11. R.B. Clapp, G.M. Hornberger, Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–604 (1978)CrossRefGoogle Scholar
  12. B.J. Cosby, G.M. Hornberger, R.B. Clapp, T.R. Ginn, A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20, 682–690 (1984)CrossRefGoogle Scholar
  13. R.H. Cuenca, M. Ek, L. Mahrt, Impact of soil water property parameterization on atmospheric boundary-layer simulation. J. Geophys. Res. 101, 7269–7277 (1996)CrossRefGoogle Scholar
  14. H.A.R. De Bruin, A model for the Priestley-Taylor parameter α. J. Clim. Appl. Meteorol. 22, 572–578 (1983)CrossRefGoogle Scholar
  15. P.A. Dirmeyer et al., Verification of land-atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeorol. (2018).  https://doi.org/10.1175/JHM-D-17-0152.1CrossRefGoogle Scholar
  16. M. Ek, R.H. Cuenca, Variation in soil parameters: implications for modeling surface fluxes and atmospheric boundary-layer development. Bound.-Layer Meteorol. 70, 369–383 (1994)CrossRefGoogle Scholar
  17. M. Ek, A.A.M. Holtslag, Influence of soil moisture on boundary-layer cloud development. J. Hydrometeorol. 5, 86–99 (2004)CrossRefGoogle Scholar
  18. M. Ek, L. Mahrt, Daytime evolution of relative humidity at the boundary-layer top. Mon. Weather Rev. 122, 2709–2721 (1994)CrossRefGoogle Scholar
  19. M. Ek, K.E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, J.D. Tarpley, Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res. 108(D22), 8851 (2003).  https://doi.org/10.1029/2002JD003296CrossRefGoogle Scholar
  20. M.A. Friedl, D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, X. Huang, MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).  https://doi.org/10.1016/j.rse.2009.08.016CrossRefGoogle Scholar
  21. G. Gutman, On the use of long-term global data of land reflectances and vegetation indices derived from the advanced very high resolution radiometer. J. Geophys. Res. 104, 62416255 (1999).  https://doi.org/10.1029/1998JD200106CrossRefGoogle Scholar
  22. M.C. Hansen, R.S. DeFries, J.R.G. Townshend, R. Sohlberg, Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 21, 13311364 (2000)Google Scholar
  23. A.A.M. Holtslag, A.C.M. Beljaars, Surface flux parameterization schemes; developments and experiences at KNMI, in Proceedings of Workshop on Parameterization of Fluxes and Land Surfaces, 24–26 Oct 1988 (ECMWF, Reading, 1989), pp. 121–147. (Also available as KNMI Sci. Rep. 88-06, 27 pp, 1988, De Bilt, Netherlands.)Google Scholar
  24. A.A.M. Holtslag, H.A.R. de Bruin, Applied modeling of the night-time surface energy balance over land. J. Appl. Meteorol. 27, 689–704 (1988)CrossRefGoogle Scholar
  25. A.A.M. Holtslag, M. Ek, Simulation of surface fluxes and boundary layer development over the pine forest in HAPEX-MOBILHY. J. Appl. Meteorol. 35, 202–213 (1996)CrossRefGoogle Scholar
  26. C.M.J. Jacobs, E.J. Moors, H.W. Ter Maat, A.J. Teuling, G. Balsamo, K. Bergaoui, J. Ettema, M. Lange, B.J.J.M. van den Hurk, P. Viterbo, W. Wergen, Evaluation of European Land Data Assimilation system (ELDAs) products using in situ observations. Tellus. 60A(5), 1023–1037 (2008)Google Scholar
  27. P.G. Jarvis, The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B 273, 593–610 (1976)CrossRefGoogle Scholar
  28. P.G. Jarvis, K.G. McNaughton, Stomata1 control of transpiration: scaling up from leaf to region. Adv. Ecol. Res. 15, 1–49 (1986)CrossRefGoogle Scholar
  29. O. Johansen, Thermal Conductivity of Soils (in Norwegian), Ph.D. thesis, Publ. ADA 044002, Trondheim, 1975. (English translation 637, Cold Reg. Res and Eng. Lab., Hanover, N.H., 1977)Google Scholar
  30. V. Koren, J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, J. Baker, A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res. 104(D16), 19,569–19,585 (1999)CrossRefGoogle Scholar
  31. J.-F. Louis, A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteorol. 17, 187–202 (1979)CrossRefGoogle Scholar
  32. J.-F. Louis, M. Tiedke, J.F. Geleyn, A short history of the operational PBL-parmeterization at ECMWF, in Proceedings of the ECMWF Workshop on Planetary Boundary Layer Parmeterisation, European Centre for Medium-Range Weather Forecasts, Reading, 25–27 Nov 1981 (1982), pp. 59–80Google Scholar
  33. V.J. Lunardini, Heat Transfer in Cold Climates (Van Nostrand Reinhold Co., New York, 1981), 731 ppGoogle Scholar
  34. L. Mahrt, Grid-averaged surface fluxes. Mon. Weather. Rev. 115, 1550–1560 (1987)CrossRefGoogle Scholar
  35. L. Mahrt, M. Ek, The influence of atmospheric stability on potential evaporation. J. Clim. Appl. Meteorol. 23, 222–234 (1984)CrossRefGoogle Scholar
  36. L. Mahrt, H.-L. Pan, A two-layer model of soil hydrology. Bound.-Layer Meteorol. 29, 1–20 (1984)CrossRefGoogle Scholar
  37. C.H. Marshall, K.C. Crawford, K.E. Mitchell, D.J. Stensrud, The impact of the land surface physics in the operational NCEP Eta model on simulating the diurnal cycle: evaluation and testing using Oklahoma Mesonet data. Weather Forecast. 18, 748–768 (2003)CrossRefGoogle Scholar
  38. M.C. McCumber, R.A. Pielke, Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. 1. Soil layer. J. Geophys. Res. 86(C10), 9929–9938 (1981)CrossRefGoogle Scholar
  39. J.L. Monteith, Evaporation and environment. Symp. Soc. Exp. Biol. 19, 205–234 (1965)Google Scholar
  40. G.-Y. Niu et al., The community Noah land surface model with multi-parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 116, D12109 (2011).  https://doi.org/10.1029/2010JD015139CrossRefGoogle Scholar
  41. J. Noilhan, S. Planton, A simple parameterization of land surface processes for meteorological models. Mon. Weather Rev. 117, 536–549 (1989)CrossRefGoogle Scholar
  42. H.-L. Pan, L. Mahrt, Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteorol. 38, 185–202 (1987)CrossRefGoogle Scholar
  43. C.A. Paulson, The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9, 857–861 (1970)CrossRefGoogle Scholar
  44. H.L. Penman, Natural evaporation from open water, bare soil, and grass. Proc. R. Soc. Lond. A193, 120–146 (1948)Google Scholar
  45. C.D. Peters-Lidard, M.S. Zion, E.F. Wood, A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes. J. Geophys. Res. 102(D4), 4303–4324 (1997)CrossRefGoogle Scholar
  46. C.D. Peters-Lidard, E. Blackburn, X. Liang, E.F. Wood, The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci. 55, 1209–1224 (1998)CrossRefGoogle Scholar
  47. J. Santanello, P.A. Dirmeyer, et al., Land-atmosphere interactions: the LoCo perspective. Bull. Am. Meteorol. Soc. (2017).  https://doi.org/10.1175/BAMS-D-17-0001.1CrossRefGoogle Scholar
  48. J.C. Schaake, V.I. Koren, O.-Y. Duan, K. Mitchell, F. Chen, Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. 101, 7461–7475 (1996)CrossRefGoogle Scholar
  49. G.E. Schwarz, R.B. Alexander, Soils Data for the Conterminous United States Derived from the NRCS State Soil Geographic (STATSGO) Data Base. Edition: 1.1 (U.S. Geological Survey, Reston, 1995). Publication Date: 19950901Google Scholar
  50. T.G. Smirnova, J.M. Brown, S.G. Benjamin, D. Kim, Parameterization of cold season processes in the MAPS land-surface scheme. J. Geophys. Res. 105 (D3) 4077–4086 (2000)CrossRefGoogle Scholar
  51. J.B. Stewart, Modeling surface conductance of pine forest. Agric. For. Meteorol. 43, 19–35 (1988)CrossRefGoogle Scholar
  52. H. Tennekes, A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci. 30, 558–567 (1973)CrossRefGoogle Scholar
  53. USDA (United States Department of Agriculture), Natural Resources Conservation Service, Soil Survey Staff. Web Soil Survey (1995). Available online at http://websoilsurvey.nrcs.usda.gov
  54. B.J.J.M. van den Hurk, A.C.M. Beljaars, Impact of some simplifying assumptions in the new ECMWF surface scheme. J. Appl. Meteorol. 35, 1333–1343 (1996)CrossRefGoogle Scholar
  55. B.J.J.M. van den Hurk, A.A.M. Holtslag, On the bulk parameterization of surface fluxes for various conditions and parameter ranges. Bound.-Layer Meteorol. 82, 119–134 (1997)CrossRefGoogle Scholar
  56. B.J.J.M. van den Hurk, A. Verhoef, A.R. van den Berg, H.A.R. de Bruin, An intercomparison of three vegetation/soil models for a sparse vineyard canopy. Q. J. R. Meteorol. Soc. 121, 1867–1889 (1995)CrossRefGoogle Scholar
  57. B.J.J.M. van den Hurk, P. Viterbo, A.C.M. Beljaars, A.K. Betts, Offline validation of the ERA40 surface scheme, European Centre for Medium-Range Weather Forecasts, Technical memorandum No. 295 (ECMWF, Reading, 2000)Google Scholar
  58. M.Th. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).Google Scholar
  59. A.P. van Ulden, A.A.M. Holtslag, Estimation of atmospheric boundary layer parameters for diffusion applications. J. Clim. Appl. Meteorol. 24, 1198–1207 (1985)Google Scholar
  60. P. Viterbo, A.C.M. Beljaars, An improved land surface parameterization scheme in the ECMWF model and its validation. J. Clim. 8, 2716–2748 (1995)CrossRefGoogle Scholar
  61. P. Viterbo, A.C.M. Beljaars, J.-F. Mahfouf, J. Teixeira, The representation of soil moisture freezing and its impact on the stable boundary layer. Q. J. R. Meteorol. Soc. 125, 2401–2426 (1999)CrossRefGoogle Scholar
  62. E.K. Webb, Profile relationships: the log-linear range, and extension to strong stability. Q. J. R. Meteorol. Soc. 96, 67–90 (1970)CrossRefGoogle Scholar
  63. P.J. Wetzel, J.-T. Chang, Concerning the relationship between evaporation and soil moisture. J. Clim. Appl. Meteorol. 26, 18–27 (1987)CrossRefGoogle Scholar
  64. Z.-L. Yang et al., The community Noah land surface model with multi-parameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. 116, D12110 (2011).  https://doi.org/10.1029/2010JD015140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Center for Atmospheric ResearchBoulderUSA

Section editors and affiliations

  • Zongxue Xu
    • 1
  • Vijay P. Singh
    • 2
  1. 1.College of Water ScienceBeijing Normal UniversityBeijingChina
  2. 2.Department of Biological and Agricultural Engineering & Zachry Department of Civil EngineeringTexas A and M UniversityCollege StationUSA

Personalised recommendations