Hydrological Challenges in Meteorological Post-processing

  • Fredrik Wetterhall
  • Paul Smith
Reference work entry


Uncertainties in the hydrometeorological forecasting chain derive from a large number of sources and are inherent to any system. One source of uncertainty is the discrepancy between the meteorological forecasts and the weather which subsequently occurs. Post-processing meteorological forecasts can reduce this discrepancy by removing systematic errors and produce more reliable, corrected forecasts. However, when the corrected NWP output is used in hydrological applications, problems may occur where consistency and correlation between meteorological variables have not been maintained. Therefore a correction that improves the forecast performance of one or more NWP outputs does not necessarily have a positive influence on the hydrological model forecasts. In this chapter the most important needs of the hydrological community in terms of meteorological post-processing are presented. The most commonly used techniques for post-processing are presented along with the pros, cons, and pitfalls in terms of their usage in hydrological applications. Finally, a few important areas of future research are identified.


Post-processing Statistics Model output Forecasting Meteorology Hydrology User needs Uncertainty Interpolation Statistics Stationarity Correlation 


  1. L. Alfieri, P. Salamon, F. Pappenberger, F. Wetterhall, J. Thielen, Operational early warning systems for water-related hazards in Europe. Environ. Sci. Policy 21, 35–49 (2012)CrossRefGoogle Scholar
  2. B. Arheimer, G. Lindström, J. Olsson, A systematic review of sensitivities in the Swedish flood-forecasting system. Atmos. Res. 100, 275–284 (2011)CrossRefGoogle Scholar
  3. G. Balsamo, S. Boussetta, P. Lopez, L. Ferranti, Evaluation of ERA-Interim and ERA-Interim-GPCP-rescaled Precipitation Over the U.S.A. ERA Report Series (European Centre for Medium Range Weather Forecasts, Reading, 2010)Google Scholar
  4. A. Bárdossy, T. Das, Influence of rainfall observation network on model calibration and application. Hydrol. Earth Syst. Sci. 12, 77–89 (2008)CrossRefGoogle Scholar
  5. K. Beven, P. Smith, Concepts of information content and likelihood in parameter calibration for hydrological simulation models. J. Hydrol. Eng. 20(1) (2015). doi:10.1061/(ASCE)HE.1943-5584.0000991CrossRefGoogle Scholar
  6. M. Clark, S. Gangopadhyay, L. Hay, B. Rajagopalan, R. Wilby, The Schaake Shuffle: a method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeorol. 5, 243–262 (2004)CrossRefGoogle Scholar
  7. H.L. Cloke, F. Pappenberger, Ensemble flood forecasting: a review. J. Hydrol. 375, 613–626 (2009)CrossRefGoogle Scholar
  8. G. Coccia, E. Todini, Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrol. Earth Syst. Sci. 15, 3253–3274 (2011)CrossRefGoogle Scholar
  9. D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A.C.M. Beljaars, L. Van De Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A.J. Geer, L. Haimberger, S.B. Healy, H. Hersbach, E.V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A.P. Mcnally, B.M. Monge-Sanz, J.J. Morcrette, B.K. Park, C. Peubey, P. De Rosnay, C. Tavolato, J.N. Thépaut, F. Vitart, The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc. 137, 553–597 (2011)CrossRefGoogle Scholar
  10. F. Di Giuseppe, F. Molteni, A.M. Tompkins, A rainfall calibration methodology for impacts modelling based on spatial mapping. Q. J. Roy. Meteorol. Soc. 139, 1389–1401 (2013)CrossRefGoogle Scholar
  11. H.R. Glahn, D.A. Lowry, The Use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteorol. 11, 1203–1211 (1972)CrossRefGoogle Scholar
  12. T. Gneiting, Calibration of Medium-Range Weather Forecasts. Technicla Memorandum (ECMWF, Reading, 2014)Google Scholar
  13. R. Hagedorn, T.M. Hamill, J.S. Whitaker, Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: two-meter temperatures. Mon. Weather Rev. 136, 2608–2619 (2008)CrossRefGoogle Scholar
  14. T. Haiden, L. Magnusson, I. Tsonevsky, F. Wetterhall, L. Alfieri, F. Pappenberger, P. De Rosnay, J. Muñoz-Sabater, G. Balsamo, C. Albergel, R. Forbes, T. Hewson, S. Malardel, D. Richardson, ECMWF Forecast Performance During the June 2013 Flood in Central Europe (European Centre for Medium-Range Weather Forecasts, Reading, 2014)Google Scholar
  15. T.M. Hamill, R. Hagedorn, J.S. Whitaker, Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: precipitation. Mon. Weather Rev. 136, 2620–2632 (2008)CrossRefGoogle Scholar
  16. Y. He, F. Wetterhall, H.L. Cloke, F. Pappenberger, M. Wilson, J. Freer, G. Mcgregor, Tracking the uncertainty in flood alerts driven by grand ensemble weather predictions. Meteorol. Appl. 16, 91–101 (2009)CrossRefGoogle Scholar
  17. HEPEX, HEPEX-SIP Topic: Post-processing (1/3) (2015) [Online]. Available: Accessed 10 June 2015
  18. V. Klemeš, Operational testing of hydrological simulation models. Hydrol. Sci. J. 31, 13–24 (1986)CrossRefGoogle Scholar
  19. F. Lalaurette, Early detection of abnormal weather conditions using a probabilistic extreme forecast index. Q. J. Roy. Meteorol. Soc. 129, 3037–3057 (2003)CrossRefGoogle Scholar
  20. K. Liechti, L. Panziera, U. Germann, M. Zappa, The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps. Hydrol. Earth Syst. Sci. 17, 3853–3869 (2013)CrossRefGoogle Scholar
  21. Y. Liu, A.H. Weerts, M. Clark, H.J. Hendricks Franssen, S. Kumar, H. Moradkhani, D.J. Seo, D. Schwanenberg, P. Smith, A.I.J.M. Van Dijk, N. Van Velzen, M. He, H. Lee, S.J. Noh, O. Rakovec, P. Restrepo, Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrol. Earth Syst. Sci. 16, 3863–3887 (2012)CrossRefGoogle Scholar
  22. S. Madadgar, H. Moradkhani, D. Garen, Towards improved post-processing of hydrologic forecast ensembles. Hydrol. Process. 28, 104–122 (2014)CrossRefGoogle Scholar
  23. D. Maraun, F. Wetterhall, A.M. Ireson, R.E. Chandler, E.J. Kendon, M. Widmann, S. Brienen, H.W. Rust, T. Sauter, M. Themeßl, V.K.C. Venema, K.P. Chun, C.M. Goodess, R.G. Jones, C. Onof, M. Vrac, I. Thiele-Eich, Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 48, RG3003 (2010)CrossRefGoogle Scholar
  24. J. Murphy, An evaluation of statistical and dynamical techniques for downscaling local climate. J. Climate 12, 2256–2284 (1999)CrossRefGoogle Scholar
  25. C. Obled, G. Bontron, R. Garçon, Quantitative precipitation forecasts: a statistical adaptation of model outputs through an analogues sorting approach. Atmos. Res. 63, 303–324 (2002)CrossRefGoogle Scholar
  26. F. Pappenberger, F. Wetterhall, E. Dutra, F. Di Giuseppe, K. Bogner, L. Alfieri, H.L. Cloke, Seamless Forecasting of Extreme Events on a Global Scale (IAHS-IAPSO-IASPEI Assembly, Gothenburg, 2013)Google Scholar
  27. S. Radanovics, J.P. Vidal, E. Sauquet, A. Ben Daoud, G. Bontron, Optimising predictor domains for spatially coherent precipitation downscaling. Hydrol. Earth Syst. Sci. 17, 4189–4208 (2013)CrossRefGoogle Scholar
  28. A.E. Raftery, T. Gneiting, F. Balabdaoui, M. Polakowski, Using Bayesian Model Averaging to calibrate forecast ensembles. Mon. Weather Rev. 133, 1155–1174 (2005)CrossRefGoogle Scholar
  29. E. Roulin, S. Vannitsem, Post-processing of medium-range probabilistic hydrological forecasting: impact of forcing, initial conditions and model errors. Hydrol. Process. 29, 1434–1449 (2015)CrossRefGoogle Scholar
  30. M.S. Roulston, L.A. Smith, Combining dynamical and statistical ensembles. Tellus A 55, 16–30 (2003)CrossRefGoogle Scholar
  31. P. Salamon, L. Feyen, Disentangling uncertainties in distributed hydrological modeling using multiplicative error models and sequential data assimilation. Water Resources Research. 46, n/a–n/a (2010)Google Scholar
  32. J. Schaake, J. Pailleux, J. Thielen, R. Arritt, T. Hamill, L. Luo, E. Martin, D. Mccollor, F. Pappenberger, Summary of recommendations of the first workshop on postprocessing and downscaling Atmospheric Forecasts for Hydrologic Applications held at Météo-France, Toulouse, France, 15–18 June 2009. Atmos. Sci. Lett. 11, 59–63 (2010)CrossRefGoogle Scholar
  33. R. Schefzik, T.L. Thorarinsdottir, T. Gneiting, Uncertainty quantification in complex simulation models using ensemble copula coupling. 48, 616–640 (2013)Google Scholar
  34. J.O. Skøien, K. Bogner, P. Salamon, P. Smith, F. Pappenberger, Regionalization of post-processed ensemble runoff forecasts. Proc IAHS 373, 109–114 (2016)CrossRefGoogle Scholar
  35. P.J. Smith, L. Panziera, K.J. Beven, Forecasting flash floods using data-based mechanistic models and NORA radar rainfall forecasts. Hydrol. Sci. J. 59, 1403–1417 (2014)CrossRefGoogle Scholar
  36. A. Tafferner, C. Forster, M. Hagen, C. Keil, T. Zinner, H. Volkert, Development and propagation of severe thunderstorms in the upper Danube catchment area: towards an integrated nowcasting and forecasting system using real-time data and high-resolution simulations. Meteorol. Atmos. Phys. 101, 211–227 (2008)CrossRefGoogle Scholar
  37. M.J. Themeßl, A. Gobiet, A. Leuprecht, Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 31, 1530–1544 (2011)CrossRefGoogle Scholar
  38. C.A. Velasco-Forero, D. Sempere-Torres, E.F. Cassiraga, J.J.A.I.M.E. Gómez-Hernández, A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv. Water Resour. 32, 986–1002 (2009)CrossRefGoogle Scholar
  39. X. Wang, C.H. Bishop, Improvement of ensemble reliability with a new dressing kernel. Q. J. Roy. Meteorol. Soc. 131, 965–986 (2005)CrossRefGoogle Scholar
  40. F. Wetterhall, Statistical Downscaling of Precipitation from Large-scale Atmospheric Circulation (Philosophical Doctor/Uppsala University, Uppsala, 2005)Google Scholar
  41. F. Wetterhall, F. Pappenberger, Y. He, J. Freer, H.L. Cloke, Conditioning model output statistics of regional climate model precipitation on circulation patterns. Nonlinear Processes Geophys. 19, 623–633 (2012)CrossRefGoogle Scholar
  42. F. Wetterhall, H.C. Winsemius, E. Dutra, M. Werner, E. Pappenberger, Seasonal predictions of agro-meteorological drought indicators for the Limpopo basin. Hydrol. Earth Syst. Sci. 19, 2577–2586 (2015)CrossRefGoogle Scholar
  43. D.S. Wilks, Statistical Methods in the Atmospheric Sciences, 3rd edn. (Elsevier, Burlington, 2011)Google Scholar
  44. A.W. Wood, D.P. Lettenmaier, A test bed for new seasonal hydrologic forecasting approaches in the Western United States. Bull. Am. Meteorol. Soc. 87, 1699–1712 (2006)CrossRefGoogle Scholar
  45. W. Yang, J. Andreasson, P. Graham, J. Olsson, J. Rosberg, F. Wetterhall, Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrol. Res. 41, 211–229 (2010)CrossRefGoogle Scholar
  46. X. Yuan, E.F. Wood, Z. Ma, A review on climate-model-based seasonal hydrologic forecasting: physical understanding and system development. Wiley Interdiscip Rev Water 2, 523–536 (2015)CrossRefGoogle Scholar
  47. E. Zsoter, Recent developments in extreme weather forecasting. ECMWF Newsletter (Reading, 2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Forecast DepartmentEuropean Centre for Medium-Range Weather ForecastsReadingUK

Personalised recommendations