Advertisement

The Family Cytophagaceae

  • Mark J. McBrideEmail author
  • Weifeng Liu
  • Xuemei Lu
  • Yongtao Zhu
  • Weixin Zhang
Reference work entry

Abstract

The family Cytophagaceae, which spans at least 25 genera and 80 species, is one of the largest families in the phylum Bacteroidetes. The members of the family are diverse in terms of physiology and habitat, but some common properties can be identified. Members of the family Cytophagaceae are commonly isolated from marine, freshwater, and terrestrial habitats. All known members are heterotrophic and most are aerobic with primarily respiratory metabolism. Menaquinones of type 7 (MK7) are the major respiratory quinones, a feature that they share with other members of the class Cytophagia but that distinguishes them from physiologically similar bacteria from the family Flavobacteriaceae, which have menaquinones of type 6 (MK6). Most species have rod-shaped cells, with some exhibiting filamentation and others forming curved, spiral, or ring-shaped cells. Most species are pigmented yellow, orange, red, or pink as a result of flexirubin pigments, carotenoids, or both. Movement over surfaces by gliding motility is common but not universal, whereas other forms of motility have apparently not been observed. Most species are mesophilic, but a few are psychrophilic. Many members of the family digest macromolecules such as polysaccharides or proteins. Members of the type genus, Cytophaga, are proficient at digestion of insoluble cellulose, as are members of the closely related genus Sporocytophaga. Cellulose utilization by members of the genus Cytophaga appears to involve an apparently novel collection of glycosyl hydrolases. Obvious cellobiohydrolases that are often associated with cellulose utilization by other bacteria are lacking. Cellulose utilization may involve novel cell-surface machinery for initial digestion of cellulose and for uptake of the resulting cellodextrins across the outer membrane. Other noteworthy members of the family include gliding bacteria of the genera Flexibacter and Microscilla, spiral and curved bacteria of the genera Arcicella, Flectobacillus, Larkinella, Runella, and Spirosoma, desiccation and radiation resistant members of the genus Hymenobacter, and strongly adherent bacteria of the genus Adhaeribacter.

Phylogenetic analyses based on 16S rRNA sequences revealed multiple potential problems with the family as currently described. The family Cytophagaceae appears to encompass two divergent clades of bacteria that are not well resolved from members of the families Cyclobacteriaceae and Flammeovirgaceae. A restructuring of the family Cytophagaceae may be necessary, either splitting it into two or more families or combining it with the families Cyclobacteriaceae and Flammeovirgaceae.

Keywords

Complete Genome Sequence Glycoside Hydrolase Cellulose Digestion Polysaccharide Lyase Protein Secretion System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Movie 44.1

MOV file: 6965 kB

References

  1. Abaydulla G, Luo X, Shi J, Peng F, Liu M, Wang Y, Dai J, Fang C (2012) Rufibacter tibetensis gen. nov., sp. nov., a novel member of the family Cytophagaceae isolated from soil. Antonie Van Leeuwenhoek 101:725–731PubMedCrossRefGoogle Scholar
  2. Abt B, Teshima H, Lucas S, Lapidus A, Del Rio TG, Nolan M, Tice H, Cheng JF, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Pati A, Tapia R, Han C, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Goker M, Tindall BJ, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC (2011) Complete genome sequence of Leadbetterella byssophila type strain (4 M15). Stand Genomic Sci 4:2–12PubMedCentralPubMedCrossRefGoogle Scholar
  3. Achenbach H, Kohl W, Wachter W, Reichenbach H (1978) Investigations of the pigments from Cytophaga johnsonae Cy jl. New flexirubin-type pigments. Arch Microbiol 117:253–257PubMedCrossRefGoogle Scholar
  4. Alain K, Tindall BJ, Catala P, Intertaglia L, Lebaron P (2010) Ekhidna lutea gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from the South East Pacific Ocean. Int J Syst Evol Microbiol 60:2972–2978PubMedCrossRefGoogle Scholar
  5. Anderson KL, Salyers AA (1989) Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J Bacteriol 171:3192–3198PubMedCentralPubMedGoogle Scholar
  6. Baik KS, Kim MS, Kim EM, Kim HR, Seong CN (2007a) Dyadobacter koreensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 57:1227–1231PubMedCrossRefGoogle Scholar
  7. Baik KS, Kim MS, Park SC, Lee DW, Lee SD, Ka JO, Choi SK, Seong CN (2007b) Spirosoma rigui sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 57:2870–2873PubMedCrossRefGoogle Scholar
  8. Baik KS, Seong CN, Moon EY, Park YD, Yi H, Chun J (2006) Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 56:2189–2192PubMedCrossRefGoogle Scholar
  9. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a gordian knot: Emended classification and description of the genus Flavobacterium, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148CrossRefGoogle Scholar
  10. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedCrossRefGoogle Scholar
  11. Bowman JP, Nichols CM, Gibson JA (2003) Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 53:1343–1355PubMedCrossRefGoogle Scholar
  12. Buczolits S, Busse HJ (2011) Genus IX: Hymenobacter. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 397–404Google Scholar
  13. Buczolits S, Denner EB, Kampfer P, Busse HJ (2006) Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelupurpurascens’ and ‘Taxeobacter chitinovorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 56:2071–2078PubMedCrossRefGoogle Scholar
  14. Buczolits S, Denner EB, Vybiral D, Wieser M, Kampfer P, Busse HJ (2002) Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 52:445–456PubMedGoogle Scholar
  15. Chang WTH, Thayer DW (1977) The cellulase system of a Cytophaga species. Can J Microbiol 23:1285–1292PubMedCrossRefGoogle Scholar
  16. Chaturvedi P, Reddy GS, Shivaji S (2005) Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol 55:2113–2117PubMedCrossRefGoogle Scholar
  17. Chelius MK, Triplett EW (2000) Dyadobacter fermentans gen. nov., sp. nov., a novel gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 50 Pt 2:751–758PubMedCrossRefGoogle Scholar
  18. Christensen PJ (1977) The history, biology, and taxonomy of the Cytophaga group. Can J Microbiol 23:1599–1653PubMedCrossRefGoogle Scholar
  19. Chun J, Kang JY, Joung Y, Kim H, Joh K, Jahng KY (2013) Dyadobacter jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63:1788–1792PubMedCrossRefGoogle Scholar
  20. Chung AP, Lopes A, Nobre MF, Morais PV (2010) Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 33:436–443PubMedCrossRefGoogle Scholar
  21. Collins MD, Hutson RA, Grant IR, Patterson MF (2000) Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 50 pt 2:731–734PubMedCrossRefGoogle Scholar
  22. Copeland A, Zhang X, Misra M, Lapidus A, Nolan M, Lucas S, Deshpande S, Cheng JF, Tapia R, Goodwin LA, Pitluck S, Liolios K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Pan C, Jeffries CD, Detter JC, Brambilla EM, Rohde M, Djao OD, Goker M, Sikorski J, Tindall BJ, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Mavromatis K (2012) Complete genome sequence of the aquatic bacterium Runella slithyformis type strain (LSU 4(T)). Stand Genomic Sci 6:145–154PubMedCentralPubMedCrossRefGoogle Scholar
  23. Dai J, Wang Y, Zhang L, Tang Y, Luo X, An H, Fang C (2009) Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol 32:543–548PubMedCrossRefGoogle Scholar
  24. Dastager SG, Deepa CK, Pandey A (2011) Plant growth promoting potential of Pontibacter niistensis in cowpea (Vigna unguiculata (L.) Walp.). Appl Soil Ecol 49:250–255CrossRefGoogle Scholar
  25. Dastager SG, Raziuddin QS, Deepa CK, Li WJ, Pandey A (2010) Pontibacter niistensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60:2867–2870PubMedCrossRefGoogle Scholar
  26. Dong Z, Guo X, Zhang X, Qiu F, Sun L, Gong H, Zhang F (2007) Dyadobacter beijingensis sp. nov., isolated from the rhizosphere of turf grasses in China. Int J Syst Evol Microbiol 57:862–865PubMedCrossRefGoogle Scholar
  27. Drijber RA, McGill WB (1992) A modification of the method using cellulose overlay agar to isolate and purify cellulolytic cytophagas from enrichment culture. Can J Microbiol 38:687–689CrossRefGoogle Scholar
  28. Drijber RA, McGill WB (1997) Cytophaga hutchinsonii ATCC 33406 contains a structural variant of the sulfonolipid N-acylcapnine. Can J Microbiol 43:689–693CrossRefGoogle Scholar
  29. Eisenberg J (ed) (1891) Bacteriologische diagnostik: Hilfstabellen zum gebrauche beim praktischen arbeiten. Leopold Voss, Hamburg, p 212Google Scholar
  30. Fahraeus G (1947) Studies on the cellulose decomposition by Cytophaga. Symb Bot Ups 9:1–128Google Scholar
  31. Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6:488–494PubMedGoogle Scholar
  32. Grace JB (1951) The life cycle of Sporocytophaga. J Gen Microbiol 5:519–524PubMedCrossRefGoogle Scholar
  33. Grote M, O’malley MA (2011) Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol Rev 35:1082–1099PubMedCrossRefGoogle Scholar
  34. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21:374–383PubMedCrossRefGoogle Scholar
  35. Holt SC, Leadbetter ER (1967) Fine structure of Sporocytophaga myxococcoides. Arch Mikrobiol 57:199–213PubMedCrossRefGoogle Scholar
  36. Hosoya S, Yokota A (2007) Reclassification of Flexibacter aggregans (Lewin 1969) Leadbetter 1974 as a later heterotypic synonym of Flexithrix dorotheae Lewin 1970. Int J Syst Evol Microbiol 57:1086–1088PubMedCrossRefGoogle Scholar
  37. Hutchinson HB, Clayton J (1919) On the decomposition of cellulose by an aerobic organism (Spirochaeta cytophaga, n. sp.). J Agric Sci 9:143–173CrossRefGoogle Scholar
  38. Imsenecki A, Solntzeva L (1936) On aerobic cellulose-decomposing bacteria. Bull Acad Sci, URSS 6:1115–1172Google Scholar
  39. Ji X, Xu Y, Zhang C, Chen N, Lu X (2012) A new locus affects cell motility, cellulose binding, and degradation by Cytophaga hutchinsonii. Appl Microbiol Biotechnol 96:161–170PubMedCrossRefGoogle Scholar
  40. Kampfer P, Young CC, Sridhar KR, Arun AB, Lai WA, Shen FT, Rekha PD (2006) Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol 56:2223–2228PubMedCrossRefGoogle Scholar
  41. Kang JY, Joung Y, Chun J, Kim H, Joh K, Jahng KY (2013) Pontibacter saemangeumensis sp. nov., isolated from sea water of South Korea. Int J Syst Evol Microbiol 63:565–569Google Scholar
  42. Klassen JL, Foght JM (2008) Differences in carotenoid composition among hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol 74:2016–2022PubMedCentralPubMedCrossRefGoogle Scholar
  43. Krieg NR, Ludwig W, Euzeby J, Whitman WB (2011) Phylum XIV. Bacteroidetes phyl. nov. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 25–469Google Scholar
  44. Krzemieniewska H (1933) Contribution a l’etude du genre Cytophaga (Winogradsky). Arch Microbiol 4:394–408Google Scholar
  45. Lail K, Sikorski J, Saunders E, Lapidus A, Glavina Del Rio T, Copeland A, Tice H, Cheng JF, Lucas S, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Brettin T, Detter JC, Schutze A, Rohde M, Tindall BJ, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Chen F (2010) Complete genome sequence of Spirosoma linguale type strain (1). Stand Genomic Sci 2:176–185PubMedCentralPubMedCrossRefGoogle Scholar
  46. Lang E, Lapidus A, Chertkov O, Brettin T, Detter JC, Han C, Copeland A, Glavina Del Rio T, Nolan M, Chen F, Lucas S, Tice H, Cheng JF, Land M, Hauser L, Chang YJ, Jeffries CD, Kopitz M, Bruce D, Goodwin L, Pitluck S, Ovchinnikova G, Pati A, Ivanova N, Mavrommatis K, Chen A, Palaniappan K, Chain P, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Goker M, Rohde M, Kyrpides NC, Klenk HP (2009) Complete genome sequence of Dyadobacter fermentans type strain (NS114). Stand Genomic Sci 1:133–140PubMedCentralPubMedCrossRefGoogle Scholar
  47. Lanyi JK, Balashov SP (2008) Xanthorhodopsin: a bacteriorhodopsin-like proton pump with a carotenoid antenna. BBA Bioenerg 1777:684–688CrossRefGoogle Scholar
  48. Larkin JM (1989) Nonphotosynthetic, nonfruiting gliding bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 2010–2138Google Scholar
  49. Larkin JM, Borrall R (1984) Family I. Spirosomaceae. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 125–126Google Scholar
  50. Larkin JM, Williams PM (1978) Runella slithyformis gen. nov., sp. nov., a curved, nonflexible, pink bacterium. Int J Syst Bacteriol 28:32–36CrossRefGoogle Scholar
  51. Larkin JM, Williams PM, Taylor R (1977) Taxonomy of the genus Microcyclus Orskov 1928: reintroduction and emendation of the genus Spirosoma Migula 1894 and proposal of a new genus Flectobacillus. Int J Syst Bacteriol 27:147–156CrossRefGoogle Scholar
  52. Leadbetter ER (2011) Genus XVII: Sporocytophaga. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, p 418Google Scholar
  53. Lee M, Woo SG, Park J, Yoo SA (2010) Dyadobacter soli sp. nov., a starch-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 60:2577–2582PubMedCrossRefGoogle Scholar
  54. Li X, Chen F (1998) Improvement in isolation of gliding bacteria by the elimination of soluble sugars. Biotechnol Tech 12:343–345CrossRefGoogle Scholar
  55. Ludwig W, Euzeby J, Whitman WB (2011) Road map of the phyla of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 1–19Google Scholar
  56. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedCentralPubMedCrossRefGoogle Scholar
  57. Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166PubMedCrossRefGoogle Scholar
  58. McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55:49–75PubMedCrossRefGoogle Scholar
  59. McBride MJ, Baker SA (1996) Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga. Appl Environ Microbiol 62:3017–3022PubMedCentralPubMedGoogle Scholar
  60. McBride MJ, Kempf MJ (1996) Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J Bacteriol 178:583–590PubMedCentralPubMedGoogle Scholar
  61. McBride MJ, Zhu Y (2013) Gliding motility and por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol 195:270–278PubMedCentralPubMedCrossRefGoogle Scholar
  62. Migula W (1894) Uber ein neues system der bakterien. Arb Bakteriol Inst Karlsruhe 1:235–238Google Scholar
  63. Munoz R, Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2011) Release LTPs104 of the all-species living tree. Syst Appl Microbiol 34:169–170PubMedCrossRefGoogle Scholar
  64. Nakagawa Y (2011) Family I: Cytophagaceae. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 371–423Google Scholar
  65. Nakagawa Y, Sakane T, Suzuki M, Hatano K (2002) Phylogenetic structure of the genera Flexibacter, Flexithrix, and Microscilla deduced from 16S rRNA sequence analysis. J Gen Appl Microbiol 48:155–165PubMedCrossRefGoogle Scholar
  66. Nakagawa Y, Yamasato K (1993) Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139 Pt 6:1155–1161PubMedCrossRefGoogle Scholar
  67. Nakagawa Y, Yamasato K (1996) Emendation of the genus Cytophaga and transfer of Cytophaga agarovorans and Cytophaga salmonicolor to Marinilabilia gen. nov.: phylogenetic analysis of the Flavobacterium-Cytophaga complex. Int J Syst Bacteriol 46:599–603CrossRefGoogle Scholar
  68. Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS, Lee KH, Park MS, Frolova GM, Oh HW, Bae KS, Park HY, Mikhailov VV (2005) Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 55:2583–2588PubMedCrossRefGoogle Scholar
  69. Nedashkovskaya OI, Ludwig W (2011) Family I: Cyclobacteriaceae. In: Krieg NR, Staley JT, Brown DR et al (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 423–441Google Scholar
  70. Nelson SS, Bollampalli S, McBride MJ (2008) SprB is a cell surface component of the Flavobacterium johnsoniae gliding motility machinery. J Bacteriol 190:2851–2857PubMedCentralPubMedCrossRefGoogle Scholar
  71. Nikitin DI, Strompl C, Oranskaya MS, Abraham WR (2004) Phylogeny of the ring-forming bacterium Arcicella aquatica gen. nov., sp. nov. (ex Nikitin et al. 1994), from a freshwater neuston biofilm. Int J Syst Evol Microbiol 54:681–684PubMedCrossRefGoogle Scholar
  72. Oren A (2006) The genera Rhodothermus, Thermonema, Hymenobacter and Salinibacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 712–738CrossRefGoogle Scholar
  73. Pringsheim EG (1951) The Vitreoscillaceae; a family of colourless, gliding, filamentous organisms. J Gen Microbiol 5:124–149PubMedCrossRefGoogle Scholar
  74. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kampfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235PubMedCentralPubMedCrossRefGoogle Scholar
  75. Raj HD, Maloy SR (1990) Family Spirosomaceae: gram-negative ring-forming aerobic bacteria. Crit Rev Microbiol 17:329–364PubMedCrossRefGoogle Scholar
  76. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedCentralPubMedGoogle Scholar
  77. Reddy GS, Garcia-Pichel F (2005) Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. Int J Syst Evol Microbiol 55:1295–1299PubMedCrossRefGoogle Scholar
  78. Reeves AR, D’Elia JN, Frias J, Salyers AA (1996) A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J Bacteriol 178:823–830PubMedCentralPubMedGoogle Scholar
  79. Reichenbach H (1989) Family I. Cytophagaceae. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 2013–2082Google Scholar
  80. Reichenbach H (1992) The order Cytophagales. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KM (eds) The prokaryotes. Springer, New York, pp 3631–3675CrossRefGoogle Scholar
  81. Reisberg EE, Hildebrandt U, Riederer M, Hentschel U (2012) Phyllosphere bacterial communities of trichome-bearing and trichomeless Arabidopsis thaliana leaves. Antonie Van Leeuwenhoek 101:551–560PubMedCrossRefGoogle Scholar
  82. Rhodes RG, Samarasam MN, Shrivastava A, van Baaren JM, Pochiraju S, Bollampalli S, McBride MJ (2010) Flavobacterium johnsoniae gldN and gldO are partially redundant genes required for gliding motility and surface localization of SprB. J Bacteriol 192:1201–1211PubMedCentralPubMedCrossRefGoogle Scholar
  83. Rhodes RG, Samarasam MN, Van Groll EJ, McBride MJ (2011) Mutations in Flavobacterium johnsoniae sprE result in defects in gliding motility and protein secretion. J Bacteriol 193:5322–5327PubMedCentralPubMedCrossRefGoogle Scholar
  84. Rickard AH, Stead AT, O’May GA, Lindsay S, Banner M, Handley PS, Gilbert P (2005) Adhaeribacter aquaticus gen. nov., sp. nov., a Gram-negative isolate from a potable water biofilm. Int J Syst Evol Microbiol 55:821–829PubMedCrossRefGoogle Scholar
  85. Riviere J (1961) Isolation and purification of aerobic cellulolytic soil bacteria. II. Isolation and description of a new Arthrobacter species associated with Sporocytophaga myxococcoides. Ann Inst Pasteur 101:793–800Google Scholar
  86. Salyers AA, Bonheyo G, Shoemaker NB (2000) Starting a new genetic system: lessons from bacteroides. Methods 20:35–46PubMedCrossRefGoogle Scholar
  87. Salyers AA, Reeves A, D’Elia J (1996) Solving the problem of how to eat something as big as yourself: diverse bacterial strategies for degrading polysaccharides. J Ind Microbiol 17:470–476CrossRefGoogle Scholar
  88. Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M, McBride MJ, Rhodes RG, Nakayama K (2010) A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci USA 107:276–281PubMedCentralPubMedCrossRefGoogle Scholar
  89. Shipman JA, Berleman JE, Salyers AA (2000) Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 182:5365–5372PubMedCentralPubMedCrossRefGoogle Scholar
  90. Shrivastava A, Rhodes RG, Pochiraju S, Nakane D, McBride MJ (2012) Flavobacterium johnsoniae RemA is a mobile cell-surface lectin involved in gliding. J Bacteriol 194:3678–3688PubMedCentralPubMedCrossRefGoogle Scholar
  91. Sijpesteijn AK, Fahraeus G (1949) Adaptation of Sporocytophaga myxococcoides to sugars. J Gen Microbiol 3:224–235PubMedCrossRefGoogle Scholar
  92. Soriano S (1945) Un nuevo orden de bacterias: Flexibacteriales. Cienc Invest 1:92–93Google Scholar
  93. Speyer E (1953) Studies on Sporocytophaga myxococcoides, Stanier 1940. Arch Mikrobiol 18:245–272PubMedCrossRefGoogle Scholar
  94. Stanier RY (1940) Studies on the cytophagas. J Bacteriol 40:619–635PubMedCentralPubMedGoogle Scholar
  95. Stanier RY (1941) Studies on marine agar-digesting bacteria. J Bacteriol 42:527–559PubMedCentralPubMedGoogle Scholar
  96. Stanier RY (1942) The cytophaga group: a contribution to the biology of myxobacteria. Bacteriol Rev 6:143–196PubMedCentralPubMedGoogle Scholar
  97. Stanier RY (1947) Studies on non-fruiting myxobacteria. I. Cytophaga johnsonae, N. Sp., A chitin-decomposing myxobacterium. J Bacteriol 53:297–315PubMedCentralGoogle Scholar
  98. Stapp C, Bortels H (1934) Mikrobiologische untersuchungen uber die zersetzung von waldstreu. Zent Bakteriol 90:28–69Google Scholar
  99. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S (2001) Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652PubMedCrossRefGoogle Scholar
  100. Takahashi M, Suzuki K, Nakagawa Y (2006) Emendation of the genus Flammeovirga and Flammeovirga aprica with the proposal of Flammeovirga arenaria nom. rev., comb. nov. and Flammeovirga yaeyamensis sp. nov. Int J Syst Evol Microbiol 56:2095–2100PubMedCrossRefGoogle Scholar
  101. Tang Y, Dai J, Zhang L, Mo Z, Wang Y, Li Y, Ji S, Fang C, Zheng C (2009) Dyadobacter alkalitolerans sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 59:60–64PubMedCrossRefGoogle Scholar
  102. Tian SP, Wang YX, Hu B, Zhang XX, Xiao W, Chen Y, Lai YH, Wen ML, Cui XL (2010) Litoribacter ruber gen. nov., sp. nov., an alkaliphilic, halotolerant bacterium isolated from a soda lake sediment. Int J Syst Evol Microbiol 60:2996–3001PubMedCrossRefGoogle Scholar
  103. Uenoyama A, Kusumoto A, Miyata M (2004) Identification of a 349-kilodalton protein (Gli349) responsible for cytadherence and glass binding during gliding of Mycoplasma mobile. J Bacteriol 186:1537–1545PubMedCentralPubMedCrossRefGoogle Scholar
  104. Ugalde JA, Podell S, Narasingarao P, Allen EE (2011) Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria. Biol Direct 6:52PubMedCentralPubMedCrossRefGoogle Scholar
  105. Vancanneyt M, Nedashkovskaya OI, Snauwaert C, Mortier S, Vandemeulebroecke K, Hoste B, Dawyndt P, Frolova GM, Janssens D, Swings J (2006) Larkinella insperata gen. nov., sp. nov., a bacterium of the phylum ‘Bacteroidetes’ isolated from water of a steam generator. Int J Syst Evol Microbiol 56:237–241PubMedCrossRefGoogle Scholar
  106. Verma JP, Martin HH (1967a) Chemistry and ultrastructure of surface layers in primitive myxobacteria: Cytophaga hutchinsonii and Sporocytophaga myxococcoides. Folia Microbiol (Praha) 12:248–254CrossRefGoogle Scholar
  107. Verma JP, Martin HH (1967b) On the surface of myxobacteria. I. Chemistry and morphology of the cell walls of Cytophaga hutchinsonii and Sporocytophaga myxococcoides. Arch Mikrobiol 59:355–380PubMedCrossRefGoogle Scholar
  108. Walker E, Warren FL (1938) Decomposition of cellulose by Cytophaga I. Biochem J 32:31–43PubMedCentralPubMedGoogle Scholar
  109. Warren RA (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212PubMedCrossRefGoogle Scholar
  110. Weon HY, Kwon SW, Son JA, Kim SJ, Kim YS, Kim BY, Ka JO (2010) Adhaeribacter aerophilus sp. nov., Adhaeribacter aerolatus sp. nov. and Segetibacter aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 60:2424–2429PubMedCrossRefGoogle Scholar
  111. Willumsen PA, Johansen JE, Karlson U, Hansen BM (2005) Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria. Appl Microbiol Biotechnol 67:420–428PubMedCrossRefGoogle Scholar
  112. Winogradsky S (1929) E’tudes sur la microbiologie du sol. Ann Inst Pasteur 43:549–633Google Scholar
  113. Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73:3536–3546PubMedCentralPubMedCrossRefGoogle Scholar
  114. Xu Y, Ji X, Chen N, Li P, Liu W, Lu X (2012) Development of replicative oriC plasmids and their versatile use in genetic manipulation of Cytophaga hutchinsonii. Appl Microbiol Biotechnol 93:697–705PubMedCrossRefGoogle Scholar
  115. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glockner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  116. Zhang JY, Liu XY, Liu SJ (2009) Adhaeribacter terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 59:1595–1598PubMedCrossRefGoogle Scholar
  117. Zhang Q, Liu C, Tang Y, Zhou G, Shen P, Fang C, Yokota A (2007) Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 57:1752–1756PubMedCrossRefGoogle Scholar
  118. Zhou Y, Wang X, Liu H, Zhang KY, Zhang YQ, Lai R, Li WJ (2007) Pontibacter akesuensis sp. nov., isolated from a desert soil in China. Int J Syst Evol Microbiol 57:321–325PubMedCrossRefGoogle Scholar
  119. Zhu Y, Li H, Zhou H, Chen G, Liu W (2010) Cellulose and cellulodextrin utilization by the cellulolytic bacterium Cytophaga hutchinsonii. Bioresour Technol 101:6432–6437PubMedCrossRefGoogle Scholar
  120. Zhu Y, Zhou H, Bi Y, Zhang W, Chen G, Liu W (2013) Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii. Appl Microbiol Biotechnol 97:3925–3937PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mark J. McBride
    • 1
    Email author
  • Weifeng Liu
    • 2
  • Xuemei Lu
    • 2
  • Yongtao Zhu
    • 1
  • Weixin Zhang
    • 2
  1. 1.Department of Biological SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.The State Key Laboratory of Microbial Technology, School of Life ScienceShandong UniversityJinanChina

Personalised recommendations