CIRP Encyclopedia of Production Engineering

Living Edition
| Editors: Sami Chatti (Editor-in-Chief), Luc Laperrière (Editor-in-Chief), Gunther Reinhart (Editor-in-Chief), Tullio Tolio (Editor-in-Chief), The International Academy for Production

Surface Integrity

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35950-7_6600-5

Synonyms

Definition

Surface integrity means the inherent or enhanced condition of a surface produced in a machining or other surface generating operations (according to Field and Kahles 1964).

Theory and Application

History

The term “surface integrity” in the context of machined surfaces was launched by Field and Kahles in the middle of the 1960s (Field and Kahles 1964). Subsequently more and more publications made use of this expression understanding plastic deformation, microcracking, phase transformations, hardness variations, tears and laps, residual stresses, etc. as typical measures to investigate.

In 1991 Brinksmeier indicated the following quantities to be measured for the description of surface integrity, including the subsurface for characterization (see Fig. 1): surface – profile, orientation of machining grooves, topography, roughness, etc. – and subsurface, material, microstructure, texture,...
This is a preview of subscription content, log in to check access.

References

  1. Ammann N (1994) Quantitative Tiefenprofilanalyse mit der Elektronenstrahlmikrosonde – Entwicklung der Technik und Untersuchungen zur Diffusion von Gallium in ZnSe/GaAs (Quantitative depth profile analysis by applying electron beam micro sensors – development of the technique and investigations on the diffusion of gallium in ZnSe/GaAs). Thesis RWTH Aachen, VDI-Verlag, Düsseldorf (in German)Google Scholar
  2. Bargel H-J, Schulze G (eds) (1988) Werkstoffkunde (Materials science), 5th edn. Düsseldorf, VDI-Verlag. (in German)Google Scholar
  3. Borbe C (2001) Bauteilverhalten hartgedrehter Funktionsflächen (Component behaviour of hard turned functional faces). Thesis Universität Hannover, Fortschritt-Berichte VDI, Reihe 2, Nr. 583, Berichte aus dem Institut für Fertigungstechnik und Spanende Werkzeugmaschinen, Universität Hannover, VDI-Verlag, Düsseldorf (in German)Google Scholar
  4. Briggs D, Grant JT (eds) (2003) Surface analysis by Auger and X-ray photoelectron spectroscopy. IM Publications, CharltonGoogle Scholar
  5. Brinksmeier E (1982) Randzonenanalyse geschliffener Werkstücke (Subsurface analysis of ground workpieces). Thesis, Universität Hannover, Hannover (in German)Google Scholar
  6. Brinksmeier E (1991) Prozess- und Werkstückqualität in der Feinbearbeitung (Process- and workpiece quality in fine machining). Postdoctoral lecture qualification, Universität Hannover, Hannover (in German)Google Scholar
  7. Bunge HJ (1969) Mathematische Methoden der Texturanalyse (Mathematical methods in texture analysis). Akademie Verlag, Berlin. (in German)Google Scholar
  8. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  9. de León LR (2009) Residual stress and part distortion in milled aerospace aluminium. Thesis, Universität Hannover, Bd. 1 von Berichte aus dem IFW, Berichte aus dem IFW, PZH Producktions-technisches Zentrum, HannoverGoogle Scholar
  10. DIN 4760: 1982-06 (1982) Gestaltabweichungen; Begriffe, Ordnungssystem (Form deviations; concepts; classification system). Beuth, BerlinGoogle Scholar
  11. DIN EN ISO 25178 (2013) Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Flächenhaft (Geometrical product specifications (GPS) – surface texture: Areal). Beuth, Berlin. (in German)Google Scholar
  12. DIN EN ISO 4287 (2010) Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Tastschnittverfahren – Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit (Geometrical product specifications (GPS) – surface texture: profile method – terms, definitions and surface texture parameters). Beuth, Berlin (in German)Google Scholar
  13. Field M, Kahles JF (1964) The surface integrity of machined and ground high strength steels. DMIC Rep 210:54–77Google Scholar
  14. Genzel C (1999) A self-consistent method for X-ray diffraction analysis of multiaxial residual-stress fields in the near-surface region of polycrystalline materials. I. Theoretical concept. J Appl Crystallogr 32:770–778CrossRefGoogle Scholar
  15. Genzel C, Krahmer S, Klaus M, Denks IA (2010) Energy-dispersive diffraction stress analysis under laboratory and synchrotron conditions: a comparative study. J Appl Crystallogr 44:1–12CrossRefGoogle Scholar
  16. Gey C (2002) Prozessauslegung für das Flankenfräsen von Titan (Process design for flank milling of titanium). Dissertation, Universität Hannover, Verein Deutscher Ingenieure: (Fortschritt Berichte VDI/2) Fortschrittberichte VDI: Reihe 2, Fertigungstechnik; Nr. 625, Berichte aus dem Institut für Fertigungstechnik und Werkzeugmaschinen, Universität Hannover, VDI-Verlag, DüsseldorfGoogle Scholar
  17. Guo YB, Sahni J (2004) A comparative study of hard turned and cylindrically ground white layers. Int J Mach Tools Manuf 44(2–3):135–145CrossRefGoogle Scholar
  18. Inasaki I, Karpuschewski B (2001) Abrasive processes. In: Toenshoff HK, Inasaki I (eds) Sensors applications. vol 1: sensors in manufacturing. Wiley, Weinheim, pp 236–271Google Scholar
  19. Jacobus K, DeVor RE, Kapoor SG (2000) Machining-induced residual stress: experimentation and modeling. Trans ASME 122:20–31Google Scholar
  20. Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann Manuf Technol 60(2):603–626CrossRefGoogle Scholar
  21. Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. Wiley, New YorkCrossRefGoogle Scholar
  22. Liu Q, Chen X, Gindy N (2006) Investigation of acoustic emission signals under a simulative environment of grinding burn. Int J Mach Tools Manuf 46(3–4):284–292.  https://doi.org/10.1016/j.ijmachtools.2005.05.017 CrossRefGoogle Scholar
  23. Macherauch E, Müller P (1961) Das sin2ψ-Verfahren der röntgenographischen Spannungsmessung (The sin2ψ-method in X-ray residual stress measurement). Z Angew Phys 13(7):305–312. (in German)Google Scholar
  24. Renner F, Zenner H, Borbe C, Toenshoff HK (2000) Forschungsbericht P 337: Vergleich der Schwingfestigkeit hartgedrehter und geschliffener Bauteile (Comparison of the dynamic strength of hard turned and ground workpieces). Studiengesellschaft Stahlanwendung e. V., Stiftung Industrieforschung, Verlag und Vertriebsgesellschaft mbH, Düsseldorf (in German)Google Scholar
  25. Saxler W (1997) Erkennung von Schleifbrand durch Schallemissionsanalyse (Detection of grinding burn by acoustic emission analysis). Thesis RWTH Aachen, VDI-Verlag, Düsseldorf (in German)Google Scholar
  26. Schwartz AJ, Kumar M, Adams BL, Field DP (eds) (2009) Electron backscatter diffraction in materials science, 2nd edn. New York, SpringerGoogle Scholar
  27. Sollich A (1994) Verbesserung des Dauerschwingverhaltens hochfester Stähle durch gezielte Eigenspannungserzeugung (Improvement of the fatigue behaviour of high strength steels by targeted generation of residual stress). Thesis Universität Kassel, VDI-Verlag, Düsseldorf (in German)Google Scholar
  28. Spieß L, Teichert G, Schwarzer R, Behnken H, Genzel C (2009) Moderne Röntgenbeugung: Röntgendiffaktometrie für Materialwissenschaftler, Physiker und Chemiker (Modern X-ray diffraction: X-ray diffractometry for material scientists, physicists and chemists), 2nd edn. Vieweg-Teubner, Wiesbaden (in German)Google Scholar
  29. Thum A, Petersen C, Svenson O (1960) Verformung, Spannung und Kerbwirkung (Strain, stress and notch effect). VDI-Verlag, DüsseldorfGoogle Scholar
  30. Toenshoff HK, Denkena B (2004) Spanen (Cutting), 2nd edn. Springer Verlag, Berlin. (in German)CrossRefGoogle Scholar
  31. Volk R (2005) Rauheitsmessung – Theorie und Praxis (Roughness measurement – theory and practice). Beuth Verlag, Berlin. (in German)Google Scholar
  32. Wilken L (2004) Theoretische und experimentelle Untersuchungen zur Optimierung einer Glimmentladungsquelle für spektroskopische Messungen von elektrisch leitenden und nichtleitenden Materialien (Theoretical and experimental investigations for the optimization of a glow discharge source for spectroscopic measurements of electrically conductive and not-conductive materials). Thesis TU Dresden, Shaker Verlag, Aachen (in German)Google Scholar

Copyright information

© CIRP 2018

Authors and Affiliations

  1. 1.Institut für Fertigungstechnik und Werkzeugmaschinen, An der Universität 2GarbsenGermany

Section editors and affiliations

  • Garret O'Donnell
    • 1
  1. 1.Trinity College DublinDublinIreland