CIRP Encyclopedia of Production Engineering

Living Edition
| Editors: The International Academy for Production Engineering, Sami Chatti, Tullio Tolio


  • Hans-Christian MöhringEmail author
Living reference work entry



“Monitoring” makes the conditions of processes, tools, machines and machine components, and workpieces visible, processible, analyzable, and describable by means of characteristic values obtained during the running process. Monitoring possesses the detection of the functioning or deviation of actual values from the planned values over a certain period of time. Thus, it enables the distinction concerning proper conditions or faulty condition. Monitoring allows to obtain the input-output causalities of processes. It provides the basis for adaptive control by adjusting process input parameters. A monitoring system comprises elements for data acquisition, signal (pre)processing, data assessment, and decision making. The monitoring strategy is the applied method for signal acquisition and assessment, in which the monitoring algorithm defines structure rules of the monitoring strategy.

Theory and Application


This is a preview of subscription content, log in to check access.


  1. Achichea S, Balazinski M, Baron L, Jemielniak K (2002) Tool wear monitoring using genetically-generated fuzzy knowledge bases. Eng Appl Artif Intell 15:303–314CrossRefGoogle Scholar
  2. Albrecht A, Park S, Altintas Y, Pritschow G (2005) High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors. Int J Mach Tools Manuf 45:993–1008CrossRefGoogle Scholar
  3. Al-Habaibeh A, Gindy N (2000) A new approach for systematic design of condition monitoring systems for milling processes. J Mater Process Technol 107:243–251CrossRefGoogle Scholar
  4. Altintas Y (1992) Prediction of cutting forces and tool breakage in milling from feed drive current measurement. J Eng Ind 114(4):386–392CrossRefGoogle Scholar
  5. Auchet S, Chevrier P, Lacour M, Lipinski P (2004) A new method of cutting force measurement based on command voltages of active electro-magnetic bearings. Int J Mach Tools Manuf 44:1441–1449CrossRefGoogle Scholar
  6. Axinte D, Gindy N (2004) Assessment of the effectiveness of a spindle power signal for tool condition monitoring in machining processes. Int J Prod Res 42(13):2679–2691CrossRefGoogle Scholar
  7. Balazinski M, Jemielniak K (1998) Tool conditions monitoring using fuzzy decision support system. In: V. CIRP international conference on monitoring and automatic supervision in manufacturing, Miedzeszyn near Warsaw, 20–21 Aug, pp 115–122Google Scholar
  8. Byrne G, O’Donnell GE (2007) An integrated force sensor solution for process monitoring of drilling operations. CIRP Ann Manuf Technol 56(1):89–92CrossRefGoogle Scholar
  9. Byrne G, Dornfeld D, Inasaki I, Ketteler G, König W, Teti R (1995) Tool condition monitoring – the status of research and industrial application. CIRP Ann Manuf Technol 44(2):541–567CrossRefGoogle Scholar
  10. Byrne G, Dornfeld D, Denkena B (2004) Advancing cutting technology. CIRP Ann Manuf Technol 52(2):483–507CrossRefGoogle Scholar
  11. Caralon TA, Kidd SR, Hand DP, Wilcox SJ, Wilkinson P, Barton JS, Jones JDC, Reuben RL (1997) Acoustic emission monitoring of tool wear during the face milling of steels and aluminium alloys using a fibre optic sensor (parts 1 + 2). Proceedings of the institution of mechanical engineers, part b. J Eng Manuf 211(4):299–309, 311–319CrossRefGoogle Scholar
  12. Davies MA, Ueda T, M’Saoubi R, Mullany B, Cooke AL (2007) On the measurement of temperature in material removal processes. CIRP Ann Manuf Technol 56(2):581–604CrossRefGoogle Scholar
  13. Dimla DE (2000) Sensor signals for tool-wear monitoring in metal cutting: a review of methods. Int J Mach Tools Manuf 40:1073–1098CrossRefGoogle Scholar
  14. Dornfeld D, Lee DE (2008) Precision manufacturing. Springer, New YorkCrossRefGoogle Scholar
  15. Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768CrossRefGoogle Scholar
  16. Hundt W, Leuenberger D, Rehsteiner F, Gygax P (1994) An approach to monitoring of the grinding process using acoustic emission (AE) technique. CIRP Ann Manuf Technol 43(1):295–298CrossRefGoogle Scholar
  17. Inasaki I (1998) Application of acoustic emission sensor for monitoring machining processes. Ultrason Int 36(1–5):273–281CrossRefGoogle Scholar
  18. Jemielniak K (2001) Some aspects of acoustic emission signal pre-processing. J Mater Process Technol 109:242–247CrossRefGoogle Scholar
  19. Jemielniak K, Arrazola PJ (2008) Application of AE and cutting force signals in tool condition monitoring in micro-milling. CIRP J Manuf Sci Technol 1:97–102CrossRefGoogle Scholar
  20. Karpuschewski B (2001) Sensoren zur Prozeßüberwachung beim Spanen. Habilitationsschrift [Sensors for monitoring of material removal processes, habilitation thesis]. Fortschritt-Berichte VDI, Reihe 2, Nr. 581, Berichte aus dem Institut für Fertigungstechnik und Spanende Werkzeugmaschinen, Universität Hannover. VDI-Verlag, DüsseldorfGoogle Scholar
  21. Karpuschewski B, Wehmeier M, Inasaki I (2000) Grinding monitoring system based on power and AE sensing. CIRP Ann Manuf Technol 49(1):235–240CrossRefGoogle Scholar
  22. Klocke F, Rehse M (1997) Intelligent tools through integrated micro systems. Prod Eng Res Dev 4(2):65–68Google Scholar
  23. Kuljanic E, Sortino M, Totis G (2009) Development of an intelligent multi-sensor chatter detection in milling. Mech Syst Signal Process 23(5):1704–1718CrossRefGoogle Scholar
  24. Kunpeng Z, Wong YS, Hong GS (2009) Wavelet analysis of sensor signals for tool condition monitoring – a review and some new results. Int J Mach Tools Manuf 49:537–553CrossRefGoogle Scholar
  25. Kurada S, Bradley C (1997) A review of machine vision sensors for TCM. Comput Ind 34:55–72CrossRefGoogle Scholar
  26. Kwak JS (2006) Application of wavelet transform technique to detect tool failure in turning. Int J Adv Manuf Technol 28:1078–1083CrossRefGoogle Scholar
  27. Lange D (2004) Systems and strategies for control-system-integrated process and machine condition monitoring. In: CIRP international conference on high performance cutting, AachenGoogle Scholar
  28. Li X, Dong S, Yuan Z (1999) Discrete wavelet transform for tool breakage monitoring. Int J Mach Tools Manuf 39:1935–1944CrossRefGoogle Scholar
  29. Micheletti DF, König W, Victor HR (1976) In process tool wear sensor for cutting operations. CIRP Ann Manuf Technol 25(2):483–496Google Scholar
  30. Möhring HC, Litwinski KM, Gümmer O (2010) Process monitoring with sensory machine tool components. CIRP Ann Manuf Technol 59(1):383–386CrossRefGoogle Scholar
  31. Pritschow G, Bretschneider J, Fritz S (1999) Reconstruction of process forces within digital servodrive systems. Prod Eng Res Dev 6(1):73–78Google Scholar
  32. Shinno H, Hashizume H (1997) In-process monitoring method for machining environment based on simultaneous multiphenomena sensing. CIRP Ann Manuf Technol 46(1):53–56CrossRefGoogle Scholar
  33. Sick B (2002) On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mech Syst Signal Process 16(4):487–546CrossRefGoogle Scholar
  34. Teti R (1995) A review of tool condition monitoring literature database. CIRP Ann Manuf Technol 44(2):659–666Google Scholar
  35. Teti R, Kumara SRT (1997) Intelligent computing methods for manufacturing systems. CIRP Ann Manuf Technol 46(2):629–652CrossRefGoogle Scholar
  36. Teti R, Jawahir IS, Jemielniak K, Segreto T, Chen S, Kossakowska J (2006) Chip form monitoring through advanced processing of cutting force sensor signals. CIRP Ann Manuf Technol 55(1):75–80CrossRefGoogle Scholar
  37. Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59(2):717–739CrossRefGoogle Scholar
  38. Tlusty J, Andrews GC (1983) A critical review of sensors for unmanned machining. CIRP Ann Manuf Technol 32(2):563–572CrossRefGoogle Scholar
  39. Tönshoff HK, Inasaki I (eds) (2001) Sensors applications. vol 1: sensors in manufacturing. Wiley-VCH, WeinheimGoogle Scholar
  40. Tönshoff HK, Wulfsberg JP, Kals HJ, König W, van Luttervelt CA (1988) Development and trends in monitoring and control of machining process. CIRP Ann Manuf Technol 37(2):611–622CrossRefGoogle Scholar

Copyright information

© CIRP 2018

Authors and Affiliations

  1. 1.Institut für WerkzeugmaschinenUniversität StuttgartStuttgartGermany

Section editors and affiliations

  • Garret O'Donnell
    • 1
  1. 1.Trinity College DublinDublinIreland