CIRP Encyclopedia of Production Engineering

Living Edition
| Editors: The International Academy for Production Engineering, Sami Chatti, Tullio Tolio

High Speed Cutting

  • Rafael Wertheim
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35950-7_6407-4

Synonyms

Definition

The main challenges in metal cutting today lie in the development and application of innovative strategies aimed, firstly, at reducing cycle time and costs for better productivity and higher profitability, and also for improved performance and especially at reducing the amount of energy and resources used as well as emissions. In machining, for example, lightweight materials or high temperature alloys, the use of high machining conditions (HSM & HPC) is often restricted by the machine’s capacity or in terms of tool wear and workpiece machinability. In general, the use of high velocity may lead to reductions in cutting forces, power, and energy, something which will in turn have a positive effect on tool and machine design.

CIRP’s main activities within High Speed Machining (HSM), or High Speed Cutting (HPC) and High Performance Cutting (HPC) topics within the STC “C,” are shown in...
This is a preview of subscription content, log in to check access.

References

  1. Abele E, Sahm A, Koppka F (2005) Einfluss des Wärmebehandlungszustandes und der Technologieparameter auf die Spanbildung und Schnittkräfte beim Hochgeschwindigkeitsfräsen (the influence of heat treatment conditions and technology parameters on chip formation and cutting forces during high speed cutting). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 292–303. (in German)CrossRefGoogle Scholar
  2. Aurich JC, Dornfeld D, Arrazola PJ, Franke V, Leitz L, Min S (2009) Burrs: analysis, control and removal. Keynote paper. Ann CIRP 58(2):519–542CrossRefGoogle Scholar
  3. Behrens A, Westhoff B, Kalisch K (2005) Application of the finite element method at the chip forming process under high speed cutting conditions. In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 112–134. (in German)CrossRefGoogle Scholar
  4. Bouzakis K-D, Mirisidis I, Lili E, Michailidis N, Sampris A, Skordaris G, Pavlidou E, Erkens G, Wirth I (2006) Impact resistance of PVD films and milling performance of coated tools at various temperature levels. Ann CIRP 55(1):67–70CrossRefGoogle Scholar
  5. Byrne G, Dornfeld D, Denkena B (2003) Advanced cutting technology. Ann CIRP Manuf Technol 52(2):483–507CrossRefGoogle Scholar
  6. Calamaz M, Coupard D, Girot F (2008) A new material model for 2D simulation of serrated chip formation when machining titanium alloy Ti-6Al-4 V. Int J Mach Tools Manuf 48(3–4):275–288CrossRefGoogle Scholar
  7. Denkena B, Altan T, Jivishov V, Al-Zkeri I (2006) Influence of material models used in finite element modeling on predicted scaling effects in machining. Ann Ger Acad Soc Prod Eng (WGP), Prod Eng Res Dev 13(1):103–108Google Scholar
  8. Denkena B, Boehnke D, Kästner J (2008) Microstructuring of functional surfaces by means of cutting processes. Prod Eng 2(1):21–25CrossRefGoogle Scholar
  9. Heisel U, Krivoruchko DV, Zaloha W, Storchak M, Stehle T (2009) Thermomechanische Wechselwirkungen beim Zerspanen. Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) 4:263–272CrossRefGoogle Scholar
  10. Klocke F (2004) Basics of HPC and resulting mechanical and thermal characteristics. In: Proceedings of the CIRP international conference on high performance cutting, Aachen, pp 19–20Google Scholar
  11. Klocke F, Hoppe S (2005) Experimentelle und numerische Untersuchungen zur Hochgeschwindigkeitszerspanung (experimental and numerical investigations of high speed cutting). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, WeinheimGoogle Scholar
  12. Komanduri R (1985) High-speed machining. Mech Eng 107(12):64–76Google Scholar
  13. Lazoglu I, Altintas Y (2002) Prediction of tool and chip temperature in continuous and interrupted machining. Int J Mach Tools Manuf 42(9):1011–1022CrossRefGoogle Scholar
  14. Leopold J, Schmidt G (2000) Challenge and problems with hybrid systems for the modeling of machining operations. Int J Form Process HERMES Sci Publ 3(1–2):157–176Google Scholar
  15. Meyer LW, Halle T, Herzig N (2005) Determination of special material behavior and development of constitutive equations for numerical simulations of high speed cutting processes. In: Proceedings of CIRP 8th international workshop on modeling of machining operations, Chemnitz, 10–11 May 2005, pp 131–138Google Scholar
  16. Müller C, Landua S, Blümke R, Exner HE (2005) Microstructure: a dominating parameter for chip forming during high-speed milling. In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim/Berlin, pp 330–350CrossRefGoogle Scholar
  17. Neugebauer R, Bouzakis KD, Denkena B, Klocke F, Sterzing A, Tekkaya AE, Wertheim R (2011) Velocity effects in metal forming and machining processes. CIRP Ann 60(2):627–650CrossRefGoogle Scholar
  18. Schmidt W (1991) Hochgeschwindigkeitsbearbeitung mit definierter Schneide: Ein theoretisch-physikalischer Beitrag (high speed machining with geometrically defined cutting edge: a theoretical and physical contribution). PhD thesis, Universität Kassel. http://worldcat.org/oclc/55574476. (in German)
  19. Siems S, Warnecke G, Aurich JC (2005) Mechanismen der Werkstoffbeanspruchungen sowie deren Beeinflussung bei der Zerspanung mit hohen Geschwindigkeiten (mechanism of material stresses and their manipulation during cutting with high velocity). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 304–329. (in German)CrossRefGoogle Scholar
  20. Sievert R, Noack HD, Hamann A, Löwe P, Singh KN, Künecke G (2005) Simulation der Spansegmentierung einer Nickelbasislegierung unter Berücksichtigung thermischer Entfestigung und duktiler Schädigung (chip segmentation simulation of a nickel-based alloy through thermal work softening and ductile damaging). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 446–469. (in German)CrossRefGoogle Scholar
  21. Stoll A, Arnold A (2010) Economic and energy-efficient cutting assisted by high-pressure cooling, using the example of titanium alloys. In: Neugebauer R (ed) Sustainable production for resource efficiency and ecomobility: proceedings of International Chemnitz Manufacturing Colloquium, ICMC 2010. Verlag Wissenschaftliche Scripten, Zwickau, pp 231–246Google Scholar
  22. Sutter G, Molinari A (2005) Analysis of the cutting force components and friction in high speed machining. ASME J Manuf Sci Eng 127(2):245–250CrossRefGoogle Scholar
  23. Tönshoff HK, Denkena B, Amor RB, Ostendorf A, Stein J, Hollmann C, Kuhlmann A (2005a) Spanbildung und Temperaturen beim Spanen mit hohen Schnittgeschwindigkeiten (chip formation and temperatures during cutting with high velocity). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 1–40. (in German)Google Scholar
  24. Tönshoff HK, Denkena B, Plöger J, Breidenstein B (2005b) Auswirkung des Hochgeschwindigkeitsspanens auf die Werkstückrandzone (effects of high speed cutting on the surface layer of a workpiece). In: Tönshoff HK, Hollmann C (eds) Hochgeschwindigkeitsspanen metallischer Werkstoffe (high speed cutting of metals). Wiley-VCH, Weinheim, pp 64–88. (in German)CrossRefGoogle Scholar
  25. Zorev NN (1963) Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. In: Compendium: international research in production engineering. ASME, New York, pp 42–49Google Scholar

Copyright information

© CIRP 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute for Machine Tools and Forming Technology IWUChemnitzGermany

Section editors and affiliations

  • Garret O'Donnell
    • 1
  1. 1.Trinity College DublinDublinIreland