Skip to main content

Membrane Transport Proteins: The Amino Acid-Polyamine-Organocation (APC) Superfamily

  • Living reference work entry
  • First Online:
  • 202 Accesses

Definition

The proteins listed below belong to the amino acid-polyamine-organocation (APC) superfamily as defined by Wong et al. (2012) and Vastermark and Saier (2014). Structurally, this superfamily can be divided into two groups: the LeuT superfamily (Krishnamurthy et al. 2009), also known as the five-helix inverted repeat (5HIR) transporter superfamily (Adelman et al. 2011), and transporters with a seven-helix inverted repeat. These latter transporters are more distantly related.

Introduction

The general transport reactions of this superfamily (Fig. 1) can be represented as follows:

  • Substrate (out) + nH+ (out) → Substrate (in) + nH+ (in)

  • Substrate (out) + nNa+ (out) → Substrate (in) + nNa+ (in)

  • Substrate-1 (out) + Substrate-2 (in) → Substrate-1 (in) + Substrate-2 (out)

  • Substrate-(out) ↔ Substrate-(in)

Fig. 1
figure 1

Phylogenetic tree of the APC superfamily Superfamily members have been selectively grouped into transporter classification (TC) subfamilies. The TC number is shown in brackets....

This is a preview of subscription content, log in via an institution.

References

  • Abramson J, Wright EM (2009) Structure and function of Na+-symporters with inverted repeats. Curr Opin Struct Biol 19:425–432

    Article  CAS  Google Scholar 

  • Adelman JL, Dale AL, Zwier MC, Bhatt D, Chong LT, Zuckerman DM, Grabe M (2011) Simulations of the alternating access mechanism of the sodium symporter Mhp1. Biophys J 101:2399–2407

    Article  CAS  Google Scholar 

  • Alguel Y, Amillis S, Leung J, Lambrinidis G, Capaldi S, Scull NJ, Craven G, Iwata S, Armstrong A, Mikros E, Diallinas G, Cameron AD, Byrne B (2016) Structure of eukaryotic purine/H(+) symporter UapA suggests a role for homodimerization in transport activity. Nat Commun 7:11336

    Article  CAS  Google Scholar 

  • Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Abe Y, Hino T, Ikeda-Suno C, Kuma H, Kang D, Murata T, Hamakubo T, Cameron A, Kobayashi T, Hamasaki N, Iwata S (2015) Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 350(6261):680–684

    Article  CAS  Google Scholar 

  • Boudker O, Verdon G (2010) Structural perspectives on secondary active transporters. Trends Pharmacol Sci 31:418–426

    Article  CAS  Google Scholar 

  • Calabrese AN, Jackson SM, Jones LN, Beckstein O, Heinkel F, Gsponer J, Sans M, Kokkinidou M, Pearson AR, Radford SE, Ashcroft AE, Henderson PJF, Topological dissection of the membrane transport protein Mhp1 derived from cysteine accessibility and mass spectrometry (2017) Anal Chem 89:8844–8852

    Article  CAS  Google Scholar 

  • Chang AB, Lin R, Studley WK, Tran CV, Saier MH Jr (2004) Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 21:171–181

    Article  CAS  Google Scholar 

  • Coleman JA, Green EM, Gouaux E (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532(7599):334–339

    Article  CAS  Google Scholar 

  • Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+-sugar symport. Science 321:810–814

    Article  CAS  Google Scholar 

  • Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, Miller C (2009) Structure of a prokaryotic virtual proton pump at 3.2 a resolution. Nature 460:1040–1043

    Article  CAS  Google Scholar 

  • Forrest LR, Rudnick G (2009) The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology 24:377–386

    Article  CAS  Google Scholar 

  • Gao X, Lu F, Zhou L, Dang S, Sun L, Li X, Wang J, Shi Y (2009) Structure and mechanism of an amino acid antiporter. Science 324:1565–1568

    Article  CAS  Google Scholar 

  • Geertsma ER, Chang YN, Shaik FR, Neldner Y, Pardon E, Steyaert J, Dutzler R (2015) Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22(10):803–808

    Article  CAS  Google Scholar 

  • Kowalczyk L, Ratera M, Paladino A, Bartoccioni P, Errasti-Murugarren EV, Portella G, Bial S, Zorzano A, Fita I, Orozco M, Carpena X, Vázquez-Ibar JL, Palacín M (2011) Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl Acad Sci USA 108:3935–3940

    Article  CAS  Google Scholar 

  • Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:469–474

    Article  CAS  Google Scholar 

  • Krishnamurthy H, Piscitelli CL, Gouaux E (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459:347–355

    Article  CAS  Google Scholar 

  • Lolkema JS, Slotbloom DJ (2005) Sequence and hydropathy profile analysis of two classes of secondary transporters. Mol Membr Biol 22:177–189

    Article  CAS  Google Scholar 

  • Lu F, Li S, Jiang Y, Jiang J, Fan H, Lu G, Deng D, Dang S, Zhang X, Wang J, Yan N (2011) Structure and mechanism of the uracil transporter UraA. Nature 472:243–246

    Article  CAS  Google Scholar 

  • Penmatsa A, Wang KH, Gouaux E (2015) X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat Struct Mol Biol 22(6):506–508

    Article  CAS  Google Scholar 

  • Perez C, Koshy C, Yilditz O, Ziegler C (2012) Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490:126–130

    Article  CAS  Google Scholar 

  • Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:D274–D279

    Article  CAS  Google Scholar 

  • Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V, Ziegler C (2009) Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458:47–52

    Article  CAS  Google Scholar 

  • Saier MH, Tran CV, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34(Database issue):D181–D186

    Article  CAS  Google Scholar 

  • Saier MH, Yen MR, Noto K, Tamang DG, Elkan C (2009) The transporter classification database: recent advances. Nucleic Acids Res 37:D274–D278

    Article  CAS  Google Scholar 

  • Schulze S, Köster S, Geldmacher U, Terwisscha van Scheltinga AC, Kühlbrandt W (2010) Structural basis of Na(+)-independent and cooperative substrate/product antiport in CaiT. Nature 467:233–236

    Article  CAS  Google Scholar 

  • Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E (2009) Structure and mechanism of a Na+-independent amino acid transporter. Science 325:1010–1014

    Article  CAS  Google Scholar 

  • Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MPS, Iwata S, Henderson PJF, Cameron AD (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter, Mhp1. Science 328:470–473

    Article  CAS  Google Scholar 

  • Simmons KJ, Jackson SM, Brueckner F, Patching SG, Beckstein O, Ivanova E, GengT WS, Drew D, Lanigan J, Sharples DJ, Sansom MS, Iwata S, Fishwick CW, Johnson AP, Cameron AD, Henderson PJ (2014) Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO J 33:1831–1844

    Article  CAS  Google Scholar 

  • Tang L, Bai L, Wang W-H, Jiang T (2010) Crystal structure of the carnitine transporter and insights into the antiport mechanism. Nat Struct Mol Biol 17:492–496

    Article  CAS  Google Scholar 

  • Vastermark A, Saier MH Jr (2014) Evolutionary relationship between 5+5 and 7+7 inverted repeat folds within the amino acid-polyamine-organocation superfamily. Proteins 82:336–346

    Article  Google Scholar 

  • Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O’Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PCJ, Iwata S, Henderson PJF, Cameron AD (2008) Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322:709–713

    Article  CAS  Google Scholar 

  • Weyand S, Ma P, Beckstein O, Baldwin J, Jackson S, Suzuki S, Shimamura T, Sansom MSP, Iwata S, Cameron AD, Baldwin SA, Henderson PJF (2010) The nucleobase-cation-symport-1 family of membrane transport proteins. In: Messerschmidt A (ed) Handbook of metalloproteins. Wiley, Chichester, pp 848–864

    Google Scholar 

  • Weyand S, Shimamura T, Beckstein O, Sansom MPS, Iwata S, Henderson PJF, Cameron AD (2011) The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1. J Synchrotron Radiat 18:20–23

    Article  CAS  Google Scholar 

  • Wong FH, Chen JS, Reddy V, Day JL, Shlykov MA, Wakabayashi ST, Saier MH Jr (2012) The amino acid-polyamine-organocation superfamily. J Mol Microbiol Biotechnol 22(2):105–113

    Article  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. F. Henderson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cameron, A.D., Jackson, S.M., Calabrese, A.N., Beckstein, O., Henderson, P.J.F. (2019). Membrane Transport Proteins: The Amino Acid-Polyamine-Organocation (APC) Superfamily. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_772-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_772-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics