Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

X-ray Fluorescence Imaging: Elemental and Chemical Speciation Mapping of Biological Systems

  • Graham N. George
  • Ingrid J. Pickering
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_681-1

Synonyms

Definition

X-ray fluorescence imaging is a technique that can be applied to determine the microscopic localization of trace elements in biological samples.

Introduction

Metal ions play a number of key roles in biology, functioning in the active sites of metalloenzymes, as structural elements of essential proteins, and additionally play a variety of physiological roles such as neurotransmitters and in the immune response. X-ray fluorescence imaging is a method that can be applied to map the microscopic localization of metals and other elements in a complex biological sample. This entry is not intended to be a comprehensive treatment across all fields, but instead seeks to illustrate the capabilities of the method relevant...

This is a preview of subscription content, log in to check access.

References

  1. Carmona A, Devès G, Roudeau S, Cloetens P, Bohic S, Ortega R (2010) Manganese accumulates within Golgi apparatus in dopaminergic cells as revealed by synchrotron X-ray fluorescence nanoimaging. ACS Chem Neurosci 3:194–203CrossRefGoogle Scholar
  2. Korbas M, Blechinger S, Krone PH, Pickering IJ, George GN (2008) Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proc Natl Acad Sci U S A 105:12108–12112CrossRefPubMedPubMedCentralGoogle Scholar
  3. Korbas M, O’Donoghue JL, Watson GE, Pickering IJ, Singh SP, Myers GJ, Clarkson TW, George GN (2010) The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem Neurosci 1:810–818CrossRefPubMedPubMedCentralGoogle Scholar
  4. Pickering IJ, Prince RC, Salt DE, George GN (2000) Quantitative chemically-specific imaging of selenium transformation in plants. Proc Natl Acad Sci U S A 97:10717–10722CrossRefPubMedPubMedCentralGoogle Scholar
  5. Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40:5010–5014CrossRefPubMedPubMedCentralGoogle Scholar
  6. Popescu BFG, George MJ, Bergmann U, Garachtchenko AV, Kelly ME, McCrea RPE, Lüning K, Devon RM, George GN, Hanson AD, Harder SM, Chapman LD, Pickering IJ, Nichol H (2009) Mapping metals in Parkinson’s and normal brain using rapid-scanning X-ray fluorescence. Phys Med Biol 54:651–663CrossRefPubMedGoogle Scholar
  7. Pushie MJ, Pickering IJ, Korbas M, Hackett MJ, George GN (2014) Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev 114:8499–8541CrossRefPubMedPubMedCentralGoogle Scholar
  8. Zhang L, Lichtmannegger J, Summer KH, Webb S, Pickering IJ, George GN (2009) Tracing copper-thiomolybdate complexes in a prospective treatment for Wilson’s disease. Biochemistry 48:891–897CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of SaskatchewanSaskatoonCanada

Section editors and affiliations

  • Graham N. George
    • 1
  1. 1.Department of Geological SciencesUniversity of SaskatchewanSaskatoonCanada