Skip to main content

Reconstitution of Ion Channels from Intracellular Membranes and Bacteria Not Amenable to Conventional Electrophysiological Techniques

  • Living reference work entry
  • First Online:
  • 146 Accesses

Definition

Reconstitution should be defined as the process of re-introduction of a purified membrane protein into an artificial phospholipid membrane. However, in practice this term is applied to the transfer of either a purified protein or a vesicle of native membrane, containing ion channels, into an artificial membrane system that permits the characterization of channel function.

Introduction

Why Reconstitute?

Over the last 50 years classical macroscopic and single channel electrophysiological approaches have facilitated enormous progress in our understanding of the identity and function of ion channels (Hille 2001). The vast majority of channels studied using these approaches are present in the surface membranes of cells; however, ion channels are also present in a number of intracellular membrane systems and organelles (Szewczyk and Just 2010). Some of these can be investigated using conventional electrophysiological approaches following the isolation and manipulation of nuclei...

This is a preview of subscription content, log in via an institution.

References

  • Andersson M, Jackman J et al (2011) Vesicle and bilayer formation of diphytanoylphosphotidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers’ electrical stability. Colloids Surf B: Biointerfaces 82:550–561

    Article  CAS  Google Scholar 

  • Barriga HMG, Booth P et al (2014) Droplet interface bilayer reconstitution and activity measurement of the mechanosensitive channel of large conductance from Escherichia coli. J R Soc Interface 11:20140404

    Article  Google Scholar 

  • Bayley H, Cronin B et al (2008) Droplet interface bilayers. Mol BioSyst 4:1191–1208

    Article  CAS  Google Scholar 

  • Bezprozvanny I (2005) The inositol 1,4,5-trisphosphate receptors. Cell Calcium 38:261–272

    Article  CAS  Google Scholar 

  • Castell OK, Berridge J et al (2012) Quantification of membrane protein inhibition by optical ion flux in a droplet interface bilayer array. Angew Chem Int Ed 51:3134–3138

    Article  CAS  Google Scholar 

  • Cortes DM, Cuello LG et al (2001) Molecular architecture of full-length KcsA. Role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117:165–180

    Article  CAS  Google Scholar 

  • Criado M, Keller BU (1987) A membrane fusion strategy for single-channel recordings of membranes usually non-accessible to patch-clamp pipette electrodes. FEBS Lett 224:172–176

    Article  CAS  Google Scholar 

  • Delcour AH, Martinac B et al (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 56:631–636

    Article  CAS  Google Scholar 

  • Favre I, Sun YM et al (1999) Reconstitution of native and cloned channels into planar bilayers. Methods Enzymol 294:287–304

    Article  CAS  Google Scholar 

  • Foskett JK, White C et al (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  CAS  Google Scholar 

  • Funakoshi K, Suzuki H et al (2006) Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal Chem 78:8169–8174

    Article  CAS  Google Scholar 

  • Gibb AJ (1995) Patch-clamp recording. In: Ashley RH (ed) Ion channels – a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Gross LCM, Castell OK et al (2011) Dynamic and reversible control of 2D membrane protein concentration in a droplet interface bilayer. Nano Lett 11:3324–3328

    Article  CAS  Google Scholar 

  • Heron AJ, Thompson JR et al (2007) Direct detection of membrane channels from gels using water-in-oil droplet bilayers. J Am Chem Soc 129:16042–16047

    Article  CAS  Google Scholar 

  • Heron AJ, Thompson JR et al (2009) Simultaneous measurement of ionic current and fluorescence from single protein pores. J Am Chem Soc 131:1652–1653

    Article  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Jung SH, Choi S et al (2012) Storable droplet interface lipid bilayers for cell-free ion channel studies. Bioprocess Biosyst Eng 35:241–246

    Article  CAS  Google Scholar 

  • Kapoor R, Kim JH, et al (2008) Preparation of artificial bilayers for electrophysiological experiments. JoVE 20. http://www.jove.com/index/Details.stp?ID=1033

  • Leptihn S, Thompson JR et al (2011) In Vitro reconstitution of eukaryotic ion channels using droplet interface bilayers. J Am Chem Soc 133:9370–9375

    Article  CAS  Google Scholar 

  • Leptihn S, Castell OK et al (2013) Constructing droplet interface bilayers from the contact of aqueous droplets in oil. Nat Protoc 8:1048–1057

    Article  CAS  Google Scholar 

  • MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65

    Article  CAS  Google Scholar 

  • Malmstadt N, Nash MA et al (2006) Automated formation of lipid bilayer membranes in a microfluidic device. Nano Lett 6:1961–1965

    Article  CAS  Google Scholar 

  • Miller C (1978) Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties. J Membr Biol 40:1–23

    Article  CAS  Google Scholar 

  • Nimigean CM (2006) A radioactive uptake assay to measure ion transport across ion channel-containing liposomes. Nat Protoc 1:1207–1212

    Article  CAS  Google Scholar 

  • Portonovo SA, Salazar CS et al (2013) hERG drug response measured in droplet bilayers. Biomed Microdevices 15:255–259

    Article  CAS  Google Scholar 

  • Sansom MSP, Shrivastava IH et al (2002) Potassium channels: structures, models, simulations. Biochim Biophys Acta 1565:294–307

    Article  CAS  Google Scholar 

  • Seddon AM, Curnow P et al (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117

    Article  CAS  Google Scholar 

  • Smith JS, Coronado R et al (1985) Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature 316:446–449

    Article  CAS  Google Scholar 

  • Syeda R, Holden MA et al (2008) Screening blockers against a potassium channel with a droplet interface bilayer array. J Am Chem Soc 130:15543–15548

    Article  CAS  Google Scholar 

  • Szewczyk A, Just W (2010) Intracellular ion channels. FEBS Lett 584:1941–2166

    Article  CAS  Google Scholar 

  • Tank DW, Miller C et al (1982) Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax. Proc Natl Acad Sci 79:7749–7753

    Article  CAS  Google Scholar 

  • Thompson JR, Heron AJ et al (2007) Enhanced stability and fluidity in droplet on hydrogel bilayers for measuring membrane protein diffusion. Nano Lett 7:3875–3878

    Article  CAS  Google Scholar 

  • Williams AJ (1994) An introduction to the methods available for ion channel reconstitution. In: Ogden D (ed) Microelectrode techniques – the plymouth workshop handbook. The Company of Biologists Limited, Cambridge

    Google Scholar 

  • Williams AJ (1995) The measurement of the function of ion channels reconstituted into artificial membranes. In: Ashley RH (ed) Ion channels – a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Zhou HX, Rivas G et al (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Williams, A., Thomas, N.L. (2019). Reconstitution of Ion Channels from Intracellular Membranes and Bacteria Not Amenable to Conventional Electrophysiological Techniques. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_372-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_372-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics