Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

CLC Channels and Transporters

  • Giovanni Zifarelli
  • Michael PuschEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_360-1

Overview

Chloride ions are physiologically relevant in most organisms, and consequently a multitude of different chloride-transporting transmembrane proteins have evolved. The present entry describes a particular class of anion-transporting proteins, the family of CLC proteins.

Research on CLC proteins began with the identification of the first member, the Cl channel CLC-0 of the electric organ of Torpedo (Miller and Richard 1990). The cloning of the Torpedo channel and of the human CLC isoforms (Jentsch et al. 1990, 2005; Jentsch 2008) rendered CLCs accessible to the tools of molecular biology and established a link between CLC dysfunction and genetic diseases. In mammals (Fig. 2), 9 CLC genes code for the plasma membrane localized Cl channels (CLC-1, CLC-2, CLC-Ka, and CLC-Kb) and the Cl/H+ antiporters (CLC-3, CLC-4, CLC-5, CLC-6, and CLC-7) localized in the membrane of intracellular endosomes/lysosomes (Zifarelli and Pusch 2007; Jentsch 2008).

All members characterized so far...

This is a preview of subscription content, log in to check access.

References

  1. Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427:803–807CrossRefGoogle Scholar
  2. Accardi A, Walden M, Nguitragool W, Jayaram H, Williams C, Miller C (2005) Separate ion pathways in a Cl/H+ exchanger. J Gen Physiol 126:563–570CrossRefGoogle Scholar
  3. Barrallo-Gimeno A, Gradogna A, Zanardi I, Pusch M, Estévez R (2015) Regulatory-auxiliary subunits of CLC chloride channel-transport proteins. J Physiol 593:4111–4127CrossRefGoogle Scholar
  4. Bateman A (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22:12–13CrossRefGoogle Scholar
  5. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287–294CrossRefGoogle Scholar
  6. Feng L, Campbell EB, Hsiung Y, Mackinnon R (2010) Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330:635–641CrossRefGoogle Scholar
  7. Hennings JC, Andrini O, Picard N, Paulais M, Huebner AK, Cayuqueo IK, Bignon Y, Keck M, Corniere N, Bohm D, Jentsch TJ, Chambrey R, Teulon J, Hubner CA, Eladari D (2017) The ClC-K2 chloride channel is critical for salt handling in the distal Nephron. J Am Soc Nephrol 28:209–217CrossRefGoogle Scholar
  8. Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43:3–36CrossRefGoogle Scholar
  9. Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348:510–514CrossRefGoogle Scholar
  10. Jentsch TJ, Poët M, Fuhrmann JC, Zdebik AA (2005) Physiological functions of CLC Cl channels gleaned from human genetic disease and mouse models. Annu Rev Physiol 67:779–807CrossRefGoogle Scholar
  11. Jossier M, Kroniewicz L, Dalmas F, Le Thiec D, Ephritikhine G, Thomine S, Barbier-Brygoo H, Vavasseur A, Filleur S, Leonhardt N (2010) The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J 64:563–576CrossRefGoogle Scholar
  12. Lueck JD, Rossi AE, Thornton CA, Campbell KP, Dirksen RT (2010) Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle. J Gen Physiol 136:597CrossRefGoogle Scholar
  13. Miller C, Richard EA (1990) The voltage-dependent chloride channel of Torpedo electroplax. Intimations of molecular structure from quirks of single-channel function. In: Alvarez-Leefmans JF, Russell JM (eds) Chloride channels and carriers in nerve, muscle and glial cells. Plenum, New York, pp 383–405CrossRefGoogle Scholar
  14. Niemeyer MI, Cid LP, Yusef YR, Briones R, Sepúlveda FV (2009) Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons. J Physiol 587:1387–1400CrossRefGoogle Scholar
  15. Novarino G, Weinert S, Rickheit G, Jentsch TJ (2010) Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328:1398–1401CrossRefGoogle Scholar
  16. Palmer EE, Stuhlmann T, Weinert S, Haan E, Van Esch H, Holvoet M, Boyle J, Leffler M, Raynaud M, Moraine C, van Bokhoven H, Kleefstra T, Kahrizi K, Najmabadi H, Ropers HH, Delgado MR, Sirsi D, Golla S, Sommer A, Pietryga MP, Chung WK, Wynn J, Rohena L, Bernardo E, Hamlin D, Faux BM, Grange DK, Manwaring L, Tolmie J, Joss S, Cobben JM, Duijkers FA, Goehringer JM, Challman TD, Hennig F, Fischer U, Grimme A, Suckow V, Musante L, Nicholl J, Shaw M, Lodh SP, Niu Z, Rosenfeld JA, Stankiewicz P, Jentsch TJ, Gecz J, Field M, Kalscheuer VM (2018) De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females. Mol Psychiatry 23:222–230.  https://doi.org/10.1038/mp.2016.135CrossRefGoogle Scholar
  17. Park E, Campbell EB, MacKinnon R (2016) Structure of a CLC chloride ion channel by cryo-electron microscopy. Nature 541:500–505CrossRefGoogle Scholar
  18. Pusch M (2002) Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 19:423–434CrossRefGoogle Scholar
  19. Pusch M, Liantonio A, De Luca A, Conte Camerino D (2007) Pharmacology of CLC chloride channels and transporters. In: Pusch M (ed) Chloride transport across biological membranes, vol 38. Elsevier, Amsterdam, pp 83–108CrossRefGoogle Scholar
  20. Smith AJ, Lippiat JD (2010) Voltage-dependent charge movement associated with activation of the CLC-5 2Cl/1H+ exchanger. FASEB J 24:3696–3705CrossRefGoogle Scholar
  21. Strange K (2003) From genes to integrative physiology: ion channel and transporter biology in Caenorhabditis elegans. Physiol Rev 83:377–415CrossRefGoogle Scholar
  22. Zifarelli G, Pusch M (2007) CLC chloride channels and transporters: a biophysical and physiological perspective. Rev Physiol Biochem Pharmacol 158:23–76CrossRefGoogle Scholar
  23. Zifarelli G, Pusch M (2009a) CLC transport proteins in plants. FEBS Lett 584:2122–2127CrossRefGoogle Scholar
  24. Zifarelli G, Pusch M (2009b) Conversion of the 2 Cl(−)/1 H(+) antiporter ClC-5 in a NO(3)(−)/H(+) antiporter by a single point mutation. EMBO J 28:175–182CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2019

Authors and Affiliations

  1. 1.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
  2. 2.Istituto di Biofisica, CNRGenovaItaly