Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Bacterial Globins

  • Robert K. Poole
  • Mark Shepherd
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_34-1

Synonyms

Definitions

Bacterial globins are proteins possessing the classical globin fold and the highly conserved active site residues required for ligand-binding function. Functions include binding of, or reaction with, oxygen, nitric oxide, carbon monoxide, or other ligands. Bacterial globins are classified into three major groups – myoglobin-like globins (two- or single-domain proteins), sensor globins, and truncated globins. NO detoxification is a well-characterized function of some, but there is inadequate functional data.

Basic Characteristics

Globins are an ancient superfamily of diverse proteins (Vinogradov et al. 2006). The first report of a microbial globin was in yeast over half a century ago, but, in the past 20 years, increasing molecular studies have revealed details of their structures and functions and the regulation of their biosynthesis. There has been a dramatic increase in the understanding of bacterial globins and the links...

This is a preview of subscription content, log in to check access.

References

  1. Boron I, Bustamante JP, Davidge KS, Singh S, Bowman LA et al (2015) Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules. F1000Res 4:22PubMedPubMedCentralGoogle Scholar
  2. Capece L, Marti MA, Crespo A, Doctorovich F, Estrin DA (2006) Heme protein oxygen affinity regulation exerted by proximal effects. J Am Chem Soc 128:12455–12461CrossRefPubMedGoogle Scholar
  3. Davidge KS, Dikshit KL (2013) Haemoglobins of mycobacteria: structural features and biological functions. Adv Microb Physiol 63:147–194CrossRefPubMedGoogle Scholar
  4. Elvers KT, Turner SM, Wainwright LM, Marsden G, Hinds J et al (2005) NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol Microbiol 57:735–750CrossRefPubMedGoogle Scholar
  5. Frey AD, Shepherd M, Jokipii-Lukkari S, Haggman H, Kallio PT (2011) The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. In: Poole RK (ed) Advances in microbial physiology, vol 58. Academic Press, London, pp 81–139CrossRefGoogle Scholar
  6. Giangiacomo L, Mattu M, Arcovito A, Bellenchi G, Bolognesi M et al (2001) Monomer-dimer equilibrium and oxygen binding properties of ferrous Vitreoscilla hemoglobin. Biochemistry 40:9311–9316CrossRefPubMedGoogle Scholar
  7. Gilles-Gonzalez MA, Gonzalez G (2005) Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses. J Inorg Biochem 99:1–22CrossRefPubMedGoogle Scholar
  8. Hou SB, Larsen RW, Boudko D, Riley CW, Karatan E et al (2000) Myoglobin-like aerotaxis transducers in archaea and bacteria. Nature 403:540–544CrossRefPubMedGoogle Scholar
  9. Lu CY, Egawa T, Wainwright LM, Poole RK, Yeh S-R (2007) Structural and functional properties of a truncated hemoglobin from a food-borne pathogen Campylobacter jejuni. J Biol Chem 282:13627–13636CrossRefPubMedGoogle Scholar
  10. Lu C, Egawa T, Mukai M, Poole RK, Yeh SR (2008) Hemoglobins from Mycobacterium tuberculosis and Campylobacter jejuni: a comparative study with resonance Raman spectroscopy. Methods Enzymol 437:255–286CrossRefPubMedGoogle Scholar
  11. Poole RK, Hughes MN (2000) New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36:775–783CrossRefPubMedGoogle Scholar
  12. Shepherd M, Barynin V, Lu CY, Bernhardt PV, Wu GH et al (2010) The single-domain globin from the pathogenic bacterium Campylobacter jejuni. Novel D-helix conformation, proximal hydrogen bonding that influences ligand binding, and peroxidase-like redox properties. J Biol Chem 285:12747–12754CrossRefPubMedPubMedCentralGoogle Scholar
  13. Spiro S (2007) Regulators of bacterial responses to nitric oxide. FEMS Microbiol Rev 31:193–211CrossRefPubMedGoogle Scholar
  14. Tinajero-Trejo M, Shepherd M (2013) The globins of Campylobacter jejuni. Adv Microb Physiol 63:97–145CrossRefPubMedGoogle Scholar
  15. Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Gough J et al (2006) A phylogenomic profile of globins. BMC Evol Biol 6:31CrossRefPubMedPubMedCentralGoogle Scholar
  16. Vinogradov SN, Tinajero-Trejo M, Poole RK, Hoogewijs D (2013) Bacterial and archaeal globins – a revised perspective. Biochim Biophys Acta 1834:1789–1800CrossRefPubMedGoogle Scholar
  17. Wittenberg JB, Bolognesi M, Wittenberg BA, Guertin M (2002) Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J Biol Chem 277:871–874CrossRefPubMedGoogle Scholar
  18. Wu G, Wainwright LM, Poole RK (2003) Microbial globins. Adv Microb Physiol 47:255–310CrossRefPubMedGoogle Scholar
  19. Zhang W, Olson JS, Phillips GN Jr (2005) Biophysical and kinetic characterization of HemAT, an aerotaxis receptor from Bacillus subtilis. Biophys J 88:2801–2814CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  1. 1.Department of Molecular Biology and BiotechnologyThe University of SheffieldSheffieldUK
  2. 2.School of BiosciencesUniversity of KentCanterburyUK