Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Hydrodynamics of Nucleic Acids: Modeling Overall Conformation and Dynamics

  • José García de la TorreEmail author
  • José Ginés Hernandez Cifre
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_299-1



Shape of rigid structures can be represented with various models with the desired detail. The wormlike chain is a versatile model for the conformation of long nucleic acids. Overall hydrodynamic properties are the sedimentation and diffusion coefficients, intrinsic viscosity, and rotational and relaxation times.


The essential roles played by nucleic acids are, in many aspects, related to the overall conformation (i.e., size, shape, flexibility, etc.) and dynamics (intramolecular, diffusive, etc.) of the macromolecular chain. Although such roles will take place in the complex environment of the cell, for the understanding or characterization of such aspects, the proper way is the study of properties in dilute solution, where the features of the individual macromolecules are manifested without influence of their surroundings. Thus, solution properties like the...

This is a preview of subscription content, log in to check access.


  1. Allison SA (1986) Brownian dynamics simulation of wormlike chains. Macromolecules 19:118–124CrossRefGoogle Scholar
  2. Amoros D, Ortega A, García de la Torre J (2011) Hydrodynamic properties of wormlike macromolecules: Monte Carlo simulation and global analysis of experimental data. Macromolecules 44:5788–5797CrossRefGoogle Scholar
  3. Ayllon Benitez A, Hernandez Cifre JG, Diaz Baños FG, Garcia de la Torre J (2015) Prediction of solution properties and dynamics of RNAs by means of Brownian dynamics simulation of coarse-grained models: ribosomal 5S RNA and phenylalanine transfer RNA. BMC Biophys 8:11CrossRefGoogle Scholar
  4. Bloomfield VA, Crothers DM, Tinoco I Jr (1999) Nucleic acids: structure, properties and function. University Science Books, SausalitoGoogle Scholar
  5. Boisbouvier J, Wu Z, Ono A, Kainosho M et al (2003) Rotational diffusion tensor of nucleic acids from 13C NMR relaxation. J Biomolec NMR 27:133–142CrossRefGoogle Scholar
  6. Carrasco B, Garcia de la Torre J (1999) Hydrodynamic properties of rigid particles. Comparison of different modelling and computational procedures. Biophys J 76:3044–3057CrossRefPubMedPubMedCentralGoogle Scholar
  7. Eimer W, Pecora R (1991) Rotational and translational diffusion of short rodlike molecules in solution: oligonucleotides. J Chem Phys 94:2324–2329CrossRefGoogle Scholar
  8. Fernandes M, Ortega A, Garcia de la Torre J (2002) Calculation of hydrodynamic properties of small nucleic acids from their atomic structures. Nucleic Acids Res 30:1782–1788CrossRefPubMedPubMedCentralGoogle Scholar
  9. García de la Torre J (2007) Dynamic electro-optic properties of macromolecules and nanoparticles in solution. A review of computational and simulation methodologies. Colloids Surf B 56:4–15CrossRefGoogle Scholar
  10. García de la Torre J, Ortega A (2003) Hydrodynamic properties of rod-like and disk-like particles in dilute solution. J Chem Phys 114:9914–9919Google Scholar
  11. García de la Torre J, Ortega A, Pérez Sanchez HE, Hernández Cifre JG (2005) MULTIHYDRO and MONTEHYDRO: conformational search and Monte Carlo calculation of solution properties of rigid and flexible macromolecular models. Biophys Chem 116:12–128CrossRefGoogle Scholar
  12. García de la Torre J, Hernández Cifre JJG, Ortega A, Rodríguez Schmidt R, Fernandes MX, Pérez Sánchez HE, Pamies R (2009) SIMUFLEX: algorithms and tools for simulation of the conformation and dynamics of flexible molecules and nanoparticles in dilute solution. J Chem Theor Comput 5:2606–2618CrossRefGoogle Scholar
  13. García de la Torre J, Ortega A, Amorós D, Rodríguez Schmidt R, Hernández Cifre JG (2010) Methods and tools for the prediction of hydrodynamic coefficients and other solution properties of flexible macromolecules in solution. A tutorial minireview. Macromol Biosci 10:721–730CrossRefPubMedGoogle Scholar
  14. Hagerman P, Zimm BH (1981) Monte Carlo approach to the analysis of the rotational diffusion of wormlike chains. Biopolymers 20:1481–1502CrossRefGoogle Scholar
  15. Huertas ML, Navarro S, López Martínez MC, García de la Torre J (1997) Simulation of the conformation and dynamics of a double-helical model for DNA. Biophys J 73:3142–3153CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ortega A, Amorós D, García de la Torre J (2011) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 101:892–898CrossRefPubMedPubMedCentralGoogle Scholar
  17. Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276:2016–2021CrossRefPubMedGoogle Scholar
  18. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, OxfordGoogle Scholar
  19. Schlick T (2002) Molecular modelling and simulation: an interdisciplinary guide. Springer, New YorkCrossRefGoogle Scholar
  20. Schroeder CM, Shaqfeh ESG, Chu S (2004) Effect of hydrodynamic interactions on DNA dynamics in extensional flow: simulation and single molecule experiment. Macromolecules 37:9242–9256CrossRefGoogle Scholar
  21. Serdyuk IN, Zaccai NR, Zaccai J (2009) Methods in molecular biophysics: structure, dynamics, Function. Cambridge University Press, CambridgeGoogle Scholar
  22. Van Holde KE, Johnson WC, Ho PS (1998) Physical biochemistry. Prentice-Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  • José García de la Torre
    • 1
    Email author
  • José Ginés Hernandez Cifre
    • 1
  1. 1.Departamento de Química FísicaFacultad de Química, Universidad de MurciaMurciaSpain

Section editors and affiliations

  • Stephen E. Harding
    • 1
  • Mary Philips-Jones
  1. 1.School of Biosciences, NCMH LaboratoryUniversity of NottinghamSutton BoningtonUK