Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Vacuolar-Type ATPases in Animal and Plant Cells

  • Haruko OkamotoEmail author
  • Masamitsu Futai
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_203-1



The F-type ATP synthase and V-type ATPase are rotating enzymes in which proton transport across membranes is coupled with ATP synthesis and ATP hydrolysis, respectively. Rotation of the stalk domain is required for continuous catalysis of the both enzymes coupling to transport.


Protons (H+) play vital roles in bioenergetics and ion homeostasis, as evidenced by the presence of unique acidic compartments both inside and outside of cells. The acidification of compartments results in an electrochemical proton gradient being generated across the membranes. The initial step in forming acidic compartments is the transport of protons by ATPases. Three classes of ATPases are known, the P-ATPase (P-type ATPase), the F-ATPase (F-type ATPase), and the V-ATPase (vacuolar-type ATPase), their nomenclature being derived from a phosphoryl...

This is a preview of subscription content, log in to check access.


  1. Binzel M, Ratajczak R (2005) Function of membrane transport systems under salinity: tonoplast. In: Lauchli A, Ruttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 423–450Google Scholar
  2. Futai M, Nakanishi-Matsui M, Okamoto H, Sekiya M, Nakamoto RK (2012) Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase. Biochim Biophys Acta Bioenerg 1817(10):1711–1721CrossRefGoogle Scholar
  3. Gaxiola RA, Palmgren MG et al (2007) Plant proton pumps. FEBS Lett 581:2204–2214CrossRefPubMedGoogle Scholar
  4. Grüber G, Manimekalai MSS, Mayer F, Müller V (2014) ATP synthases from archaea: the beauty of a molecular motor. Biochim Biophys Acta Bioenerg 1837(6):940–952CrossRefGoogle Scholar
  5. Hirata T, Iwamoto-Kihara A, Sun-Wada G-H, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase. J Biol Chem 278:23714–23719CrossRefPubMedGoogle Scholar
  6. Holliday S (2014) Vacuolar H+-ATPase: an essential multitasking enzyme in physiology and pathophysiology. New J Sci 2014:2–21CrossRefGoogle Scholar
  7. Marshansky V, Futai M Grüber G (2015) Eukaryotic V-ATPase and its super-complexes: from structure and function to disease and drug targeting. In: Advances in biochemistry in health and disease book series (ABHD), vol 14. Springer, New York City, pp 301–335Google Scholar
  8. Martínez-Muñoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:2309–20319CrossRefGoogle Scholar
  9. Matsumoto N, Daido S, Sun-Wada GH, Wada Y, Futai M, Nakanishi-Matsui M (2014) Diversity of proton pumps in osteoclasts: V-ATPase with a3 and d2 isoforms is a major form in osteoclasts. Biochim Biophys Acta Bioenerg 1837(6):744–749CrossRefGoogle Scholar
  10. Oka T, Yamamoto R, Futai M (1998) Multiple genes for vacuolar-type ATPase proteolipids in Caenorhabditis elegans a new gene, vha-3, has a distinct cell-specific distribution. J Biol Chem 273:22570–22576CrossRefPubMedGoogle Scholar
  11. Okamoto-Terry H, Umeki K, Nakanishi-Matsui M, Futai M (2013) Glu-44 in the amino-terminal α-helix of yeast vacuolar ATPase E subunit (Vma4p) has a role for VoV1 assembly. J Biol Chem 288:36236–36243CrossRefPubMedPubMedCentralGoogle Scholar
  12. Parra KJ, Chan C-Y, Chen J (2014) Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals. Eukaryot Cell 13:706–714CrossRefPubMedPubMedCentralGoogle Scholar
  13. Smith AN, Rovering RC et al (2003) Revised nomenclature for mammalian vacuolar-type H+-ATPase subunit genes. Mol Cell 12:801–803CrossRefPubMedGoogle Scholar
  14. Stransky L, Cotter K, Forgac M (2016) The function of V-ATPases in cancer. Physiol Rev 96:1071–1091CrossRefPubMedPubMedCentralGoogle Scholar
  15. Sun-Wada G-H, Wada Y (2015) Role of vacuolar-type proton ATPase in signal transduction. BBA 1847:1166–1172PubMedGoogle Scholar
  16. Sun-Wada G-H, Murata Y, Yamamoto A, Kanazawa H, Wada Y, Futai M (2000) Acidic endomembrane organelles are required for mouse postimplantation development. Dev Biol 228:315–325CrossRefPubMedGoogle Scholar
  17. Sun-Wada G-H, Futai M, Wada Y (2004) Vacuolar-type proton ATPases: subunit isoforms and tissue-specific functions. In: Handbook of ATPases. Wiley, Weinheim, pp 379–394Google Scholar
  18. Sze H, Schumacher K et al (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H +-ATPase. Trends Plant Sci 7:157–161CrossRefPubMedGoogle Scholar
  19. Toei M, Saum R, Forgac M (2010) Regulation and isoform function of the V-ATPases. Biochemistry 49:4715–4723CrossRefPubMedPubMedCentralGoogle Scholar
  20. Zhang Z, Zheng Y et al (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283:35983–35995CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki/OsakaJapan
  2. 2.Biological SciencesUniversity of SouthamptonSouthamptonUK
  3. 3.Department of BiochemistryIwate Medical UniversityYahaba/IwateJapan

Section editors and affiliations

  • Judith P. Armitage
    • 1
  1. 1.OCISB, Department of BiochemistryUniversity of OxfordOxfordUK