Skip to main content

Sodium-Driven Flagellar Motor: Structure and Mechanisms

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics
  • 239 Accesses

Synonyms

Energy transduction; Molecular motors; Rotary motor

Definition

Ion-driven motor of flagella is very unique and is a force generation nanomachine which is a supramolecular complex. The flagellar motor, which is a molecular machine composed of many proteins, is embedded in inner membrane of bacteria and generates torque by ion flux.

Introduction

Many motile bacteria move by rotating flagella. These are filamentous organs extending from the cell body. A flagellum consists of three parts, the filament, the hook, and the basal body. The filament functions as a helical propeller, and the basal body acts as a rotary motor embedded in the cell membranes. The hook works as a universal joint between these two structures that transmit torque smoothly. The motor can run reversibly in both directions: clockwise (CW) and counterclockwise (CCW). Energy for rotation of the motor comes from the electrochemical gradient of specific ions across the cytoplasmic membrane, and motors are classified...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Asai Y, Kojima S et al (1997) Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium. J Bacteriol 179:5104–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai Y, Sockett RE et al (2000) Coupling ion specificity of chimeras between H+- and Na+-driven motor proteins, MotB and PomB, in Vibrio polar flagella. EMBO J 19:3639–3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai Y, Yakushi T et al (2003) Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol 327:453–463

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka H, Wada T et al (2009) Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microbiol 71:825–835

    Article  CAS  PubMed  Google Scholar 

  • Hirota N, Kitada M et al (1981) Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett 132:278–280

    Article  CAS  Google Scholar 

  • Hosking ER, Vogt C et al (2006) The Escherichia coli MotAB proton channel unplugged. J Mol Biol 364:921–937

    Article  CAS  PubMed  Google Scholar 

  • Inaba S, Nishigaki T et al (2017) Localization and domain characterization of the SflA regulator of flagellar formation in Vibrio alginolyticus. Genes Cells 7:619–627

    Article  CAS  Google Scholar 

  • Inoue Y, Lo CJ et al (2008) Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. J Mol Biol 376:1251–1259

    Article  CAS  PubMed  Google Scholar 

  • Kitaoka M, Nishigaki T et al (2013) A novel dnaJ family gene, sflA, encodes an inhibitor of flagellation in marine Vibrio species. J Bacteriol 195:816–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima S, Blair DF (2001) Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–13050

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Asai Y et al (1999) Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations of putative channel components. J Mol Biol 285:1537–1547

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Shinohara A et al (2008) Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY. Proc Natl Acad Sci U S A 105:7696–7701

    Article  PubMed  PubMed Central  Google Scholar 

  • Kojima S, Imada K et al (2009) Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol Microbiol 73:710–718

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto A, Shinohara A et al (2008) Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. Microbiology 154:1390–1399

    Article  CAS  PubMed  Google Scholar 

  • Lee LK, Ginsburg MA et al (2010) Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466:996–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Kojima S et al (2011) Characterization of the periplasmic region of PomB, a Na+-driven flagellar stator protein in Vibrio alginolyticus. J Bacteriol 193:3773–3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magariyama Y, Sugiyama S et al (1994) Very fast flagellar rotation. Nature 381:752

    Article  Google Scholar 

  • McCarter LL (1994a) MotX, the channel component of the sodium-type flagellar motor. J Bacteriol 176:5988–5998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarter LL (1994b) MotY, a component of the sodium-type flagellar motor. J Bacteriol 176:4219–4225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishihara Y, Kitao A (2015) Gate-controlled proton diffusion and protonation-induced ratchet motion in the stator of the bacterial flagellar motor. Proc Natl Acad Sci U S A 112:7737–7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okunishi I, Kawagishi I et al (1996) Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus. J Bacteriol 178:2409–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono H, Takashima A et al (2015) The MinD homolog FlhG regulates the synthesis of the single polar flagellum of Vibrio alginolyticus. Mol Microbiol 98:130–141

    Article  CAS  PubMed  Google Scholar 

  • Paulick A, Koerdt A et al (2009) Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol 71:836–850

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Homma M (2000) Functional reconstitution of the Na+-driven polar flagellar motor component of Vibrio alginolyticus. J Biol Chem 275:5718–5722

    Article  CAS  PubMed  Google Scholar 

  • Sowa Y, Hotta H et al (2003) Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J Mol Biol 327:1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Sowa Y, Rowe AD et al (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–919

    Article  CAS  PubMed  Google Scholar 

  • Sudo Y, Kitade Y et al (2009) Interaction between Na+ ion and carboxylates of the PomA-PomB stator unit studied by ATR-FTIR spectroscopy. Biochemistry 48:11699–11705

    Article  CAS  PubMed  Google Scholar 

  • Takekawa N, Kojima S et al (2014) Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus. J Bacteriol 196:1377–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takekawa N, Nishiyama M et al (2015) Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium. Sci Rep 5:12711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takekawa N, Kwon S et al (2016) HubP, a polar landmark protein, regulates flagellar number by assisting in the proper polar localization of FlhG in Vibrio alginolyticus. J Bacteriol 198:3091–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terahara N, Krulwich TA et al (2008) Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci U S A 105:14359–14364

    Article  PubMed  PubMed Central  Google Scholar 

  • Terashima H, Fukuoka H et al (2006) The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na-driven flagella and required for stator formation. Mol Microbiol 62:1170–1180

    Article  CAS  PubMed  Google Scholar 

  • Terashima H, Koike M et al (2010a) The flagellar basal-body associated protein, FlgT, essential for a novel ring structure in sodium-driven Vibrio motor. J Bacteriol 192:5609–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima H, Kojima S et al (2010b) Functional transfer of an essential aspartate for the ion-binding site in the stator proteins of the bacterial flagellar motor. J Mol Biol 397:689–696

    Article  CAS  PubMed  Google Scholar 

  • Terashima H, Li N et al (2013) Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT. Proc Natl Acad Sci U S A 110:6133–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thormann KM, Paulick A (2010) Tuning the flagellar motor. Microbiology 156:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Yakushi T, Maki S et al (2004) Interaction of PomB with the third transmembrane segment of PomA in the Na+-driven polar flagellum of Vibrio alginolyticus. J Bacteriol 186:5281–5291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakushi T, Yang J et al (2006) Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H +-driven and Na+-driven motors in Escherichia coli. J Bacteriol 188:1466–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yorimitsu T, Homma M (2001) Na+-driven flagellar motor of Vibrio. Biochim Biophys Acta 1505:82–93

    Article  CAS  PubMed  Google Scholar 

  • Yorimitsu T, Sato K et al (2000) Intermolecular cross-linking between the periplasmic loop 3-4 regions of PomA, a component of the Na+-driven flagellar motor of Vibrio alginolyticus. J Biol Chem 275:31387–31391

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Takao M et al (2014) Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor. Proc Natl Acad Sci U S A 111:13523–13528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, NIshikino T et al (2017) Molecular architecture of the sheathed polar flagellum in Vibrio alginolyticus. Proc Natl Acad Sci USA 114:10966–10971. https://doi.org/10.1073/pnas.1712489114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Homma .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Homma, M., Kojima, S. (2018). Sodium-Driven Flagellar Motor: Structure and Mechanisms. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_197-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_197-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics