Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Macromolecular Hydration: NMR Studies

Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-642-35943-9_10075-2

Introduction

Water is crucial to many biological, physical, and chemical processes and is most important component of natural environment (Kuntz et al. 1969; Kuntz 1971; Rodin et al. 1986; Callaghan and Lelievre 1986; Gisser and Ediger 1993; Rodin et al. 1994; Krishman 1996; Wüthrich et al. 1996). The significance of water in all aspects of environmental interactions has resulted in the development of structural models of water to describe the functionality of biological macromolecules and complexes (Kuntz et al. 1969; Kuntz 1971; Wüthrich et al. 1996; Otting 1997; Wider 1998; Szuminska et al. 2001; Van-Quynh et al. 2003; Halle 2004). The dynamic states of water at the interactions of water molecules with polymers and biopolymers were in the focus of nuclear magnetic resonance (NMR) studies for long period of time (Kuntz 1971; Rodin et al. 1986; Callaghan and Lelievre 1986; Rodin et al. 1994; Krishman 1996; Wüthrich et al. 1996; Otting 1997; Wider 1998; Szuminska et al. 2001;...

This is a preview of subscription content, log in to check access.

References

  1. Ahn S, Kim EH, Lee C (2005) Diffusion-ordered NMR spectroscopy of poly([ethylene-co-vinyl acetate]-graft -vinyl chloride) in solution. Bull Kor Chem Soc 26(2):331–333Google Scholar
  2. Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5(11):808–814CrossRefGoogle Scholar
  3. Belton P (2011) NMR studies of hydration in low water content biopolymer systems. Magn Reson Chem 49:S127–S132CrossRefGoogle Scholar
  4. Bernini A, Spiga O, Consonni R et al (2011) Hydration studies on the archaeal protein Sso7d using NMR measurements and MD simulations. BMC Struct Biol 11:44CrossRefGoogle Scholar
  5. Callaghan PT, Furó I (2004) Diffusion–diffusion correlation and exchange as a signature for local order and dynamics. J Chem Phys 120(8):4032–4038CrossRefGoogle Scholar
  6. Callaghan PT, Lelievre J (1986) The influence of polymer size and shape on the self-diffusion of polysaccharides and solvents. Anal Chim Acta 189:145–166CrossRefGoogle Scholar
  7. Chi Y, Xu S et al (2017) Studies of relationship between polymer structure and hydration environment in amphiphilic polytartaramides. J Polym Sci B Polym Phys 55:138–145CrossRefGoogle Scholar
  8. Cosgrove T, Rodin VV, Murray M et al (2007a) Self-diffusion in solutions of carboxylated acrylic polymers as studied by pulsed field gradient NMR. 1. Solvent diffusion studies. J Polym Res 14(3):167–174  https://doi.org/10.1007/s10965-006-9087-1CrossRefGoogle Scholar
  9. Cosgrove T, Rodin VV, Murray M et al (2007b) Self-diffusion in solutions of carboxylated acrylic polymers as studied by pulsed field gradient NMR. 2. Diffusion of macromolecules. J Polym Res 14(3):175–180  https://doi.org/10.1007/s10965-006-9088-0CrossRefGoogle Scholar
  10. Cotts RM, Hoch M, Sun T et al (1989) Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J Magn Reson 83(2):252–266CrossRefGoogle Scholar
  11. Denisov PV, Halle B (1995) Hydrogen exchange and protein hydration:the deuteron spin relaxation dispersions of bovine pancreatic trypsin inhibitor and ubiquitin. J Mol Biol 245:698–709CrossRefGoogle Scholar
  12. Fogarty AC, Laage D (2014) Water dynamics in protein hydration shells: The molecular origins of the dynamical perturbation. J Phys Chem B 118(28):7715–7729CrossRefGoogle Scholar
  13. Foster MP, McElroy CA, Amero CD (2007) Solution NMR of large molecules and assemblies. Biochemistry 46(2):331–340CrossRefGoogle Scholar
  14. Foster RJ, Damion RA, Baboolal TG et al (2016) A nuclear magnetic resonance study of water in aggrecan solutions. Royal Soc Open Sci 3:150705  https://doi.org/10.1098/rsos.150705CrossRefGoogle Scholar
  15. Galvosas P, Ying Qiao Y, Schonhoff M (2007) On the use of 2D correlation and exchange NMR spectroscopy in organic porous materials. Magn Reson Imaging 25:497–500CrossRefGoogle Scholar
  16. Gisser DJ, Ediger MD (1993) Modification of solvent rotational dynamics by the addition of small molecules or polymers. J Phys Chem 97:10818–10823.  https://doi.org/10.1021/j100143a048CrossRefGoogle Scholar
  17. Gupta S, D’Mello R, Chance MR (2012) Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry. PNAS 109(37):14882–14887CrossRefGoogle Scholar
  18. Halle B (2004) Protein hydration dynamics in solution: a critical survey. Phil Trans R Soc Lond B 359:1207–1224CrossRefGoogle Scholar
  19. Huang H, Melacini G (2006) High-resolution protein hydration NMR experiments: probing how protein surfaces interact with water and other non-covalent ligands. Anal Chim Acta 564(1):1–9CrossRefGoogle Scholar
  20. Irmukhametova GS, Mun GA, Khutoryanskiy VV (2011) Thiolated mucoadhesive and PEGylated nonmucoadhesive organosilica nanoparticles from 3-Mercaptopropyltrimethoxysilane. Langmuir 27:9551–9556CrossRefGoogle Scholar
  21. Krishman VV (1996) Determination of oligomeric state of proteins in solution from pulsed-field-gredient self-diffusion coefficient measurements. A comparison of experimental, theoretical and hard-sphere approximated values. J Magn Reson 124:468–473CrossRefGoogle Scholar
  22. Kuntz ID Jr (1971) Hydration of macromolecules. III. Hydration of polypeptides. J Am Chem Soc 93(2):514–516.  https://doi.org/10.1021/ja00731a036CrossRefGoogle Scholar
  23. Kuntz ID Jr, Brassfield TS, Law GD et al (1969) Hydration of macromolecules. Science 163(3873):1329–1331CrossRefGoogle Scholar
  24. Martini S, Bonechi C, Foletti A et al (2013) Water-protein interactions: the secret of protein dynamics. Sci World J 2013:138916  https://doi.org/10.1155/2013/138916CrossRefGoogle Scholar
  25. Otting G (1997) NMR studies of water bound to biological molecules. Prog NMR Spectrosc 31:259–285CrossRefGoogle Scholar
  26. Rodin VV (2004) Magnetic resonance methods. Press MIPhT, Moscow, p 95. ISBN: 5-7417-0228-7Google Scholar
  27. Rodin VV (2017) Methods of magnetic resonance in studying natural biomaterials. In: Wang Z (ed) Encyclopedia of physical organic chemistry, 1st edn. Part 4 (Tools and experimental techniques). Wiley, N.Y. pp 2861–2908. ISBN 978–1–118-47045-9. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118470451.html
  28. Rodin VV (2018) Magnetic resonance in studying cells, biotechnology dispersions, fibers and collagen based tissues for biomedical engineering. In: Artmann GM (ed) Biological, physical and technical basics of cell engineering, 1st edn. Springer, Springer Nature Singapore Pte Ltd, ISBN 978-981-10-7903-0, pp.339–363. https://link.springer.com/chapter/10.1007/978-981-10-7904-7_15CrossRefGoogle Scholar
  29. Rodin VV, Cosgrove T (2016) Nuclear magnetic resonance study of water-polymer interactions and self-diffusion of water in polymer films. OALJ Chem Mater Sci 3(10):1–17CrossRefGoogle Scholar
  30. Rodin VV, Knight DP (2003) Self-diffusion of water into silk fibers from magnetic field pulse gradient data. Biophysics 48(3):429–435Google Scholar
  31. Rodin VV, Nikerov VA (2014) NMR-Relaxation and PFG NMR studies of water dynamics in oriented collagen fibres with different degree of cross-linking. Curr Tissue Eng 3(1):47–61  https://doi.org/10.2174/2211542003666140626211652CrossRefGoogle Scholar
  32. Rodin VV, Isangalin FS, Volkov VY (1986) Structure of water protein solutions in a presence of xenon clathrates. Cryobiol CryoMed 14:3–7Google Scholar
  33. Rodin VV, Kharenko AV, Sakharov BV et al (1994) Molecular dynamics of polyelectrolytes and their complexes by NMR-data. Colloid J 56(1):84–90Google Scholar
  34. Rodin VV, Kharenko AV, Aksenova NI et al (1999) Properties of IPC in polymer systems with diphilic compounds. Plastich Massy 5:22–24Google Scholar
  35. Rodin VV, Izmailova VN, Gorbacheva NV (2000) Sparsely cross linked polyacrylic acid: dynamic properties in water mixtures. Int Polym Sci Technol 27(8):T63–T69Google Scholar
  36. Rodin VV, McDonald PJ, Jones M (2014) Two-dimensional distribution function of diffusion in wood obtained using 2D Laplace inversion. Appl Phys Math 6:03–07Google Scholar
  37. Schirò G, Fichou Y, Gallat F-X et al (2015) Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nat Commun 6:6490.  https://doi.org/10.1038/ncomms7490CrossRefPubMedPubMedCentralGoogle Scholar
  38. Stchedroff MJ, Kenwright AM, Morris GA et al (2004) 2D and 3D DOSY methods for studying mixtures of oligomeric dimethylsiloxanes. PhysChemChemPhys 6:3221–3227Google Scholar
  39. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echos in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292CrossRefGoogle Scholar
  40. Szuminska K, Gutsze A, Kowalczyk A (2001) Relaxation of water protons in highly concentrated aqueous protein systems studied by nmr spectroscopy. Z Naturforsch 56c:1075–1081Google Scholar
  41. Tanner JE (1970) Use of the stimulated echo in NMR diffusion studies. J Chem Phys 52(5):2523–2526CrossRefGoogle Scholar
  42. Tanner JE (1978) Transient diffusion in system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient. J Chem Phys 69(4):1748–1754CrossRefGoogle Scholar
  43. Van-Quynh A, Willson S, Bryant R (2003) Protein reorientation and bound water molecules measured by 1H magnetic spin-lattice relaxation. Biophys J 84:558–563CrossRefGoogle Scholar
  44. Wider G (1998) Technical aspects of NMR spectroscopy with biological macromolecules. Progr NMR Spectrosc 32:193–275CrossRefGoogle Scholar
  45. Wider G (1999) Transverse relaxation-optimized NMR spectroscopy (TROSY). European Patent EP 0 91 6963 B1Google Scholar
  46. Wüthrich K, Billeter M, Güntert P et al (1996) NMR studies of the hydration of biological macromolecules. Faraday Discuss 103:245–253CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies’ Association (EBSA) 2018

Authors and Affiliations

  1. 1.Institute of Organic ChemistryJohannes Kepler University LinzLinzAustria

Section editors and affiliations

  • Mitsu Ikura

There are no affiliations available