Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Microscale Thermophoresis (MST)

  • Amit J. Gupta
  • Stefan Duhr
  • Philipp Baaske
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_10063-1

Synonyms

Definition

Microscale thermophoresis (MST) is a biophysical technique that measures the strength of the interaction between two molecules by detecting variations in fluorescence signal as a result of an IR laser-induced temperature change.

Introduction

Microscale thermophoresis (MST) (Dhont et al. 2007; Duhr and Braun 2006), as other methods used to characterize interaction parameters, utilizes differential detection of bound and unbound states of a given molecular specimen. Quantification of the absolute or relative amounts of bound and unbound state can be used to determine characteristic physical parameters that describe the chemical equilibrium of an interaction. Differentiation between molecular states (e.g., bound and unbound) of a molecule can be achieved by using techniques that measure size (gel electrophoresis, fluorescence correlation spectroscopy, fluorescence polarization), charge (electrophoretic mobility shift assay), or conformation...

This is a preview of subscription content, log in to check access.

References

  1. Baaske P, Wienken CJ, Reineck P, Duhr S, Braun D (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed Engl 49:2238–2241CrossRefPubMedGoogle Scholar
  2. Chapleau RR, Frey JS, Riddle DS, Ruiz ON, Mauzy CA (2015) Measuring single-domain antibody interactions with epitopes in jet fuel using microscale thermophoresis. Anal Lett 48(3):526–530CrossRefGoogle Scholar
  3. Dhont JKG, Wiegand S, Duhr S, Braun D (2007) Thermodiffusion of charged colloids: single-particle diffusion. Langmuir 23:1674–1683CrossRefPubMedGoogle Scholar
  4. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103:19678–19682CrossRefPubMedPubMedCentralGoogle Scholar
  5. Koch S, de Wit JG, Vos I, Birkner JP, Gordiichuk P, Herrmann A, van Oijen AM, Driessen AJ (2016) Lipids activate SecA for high affinity binding to the SecYEG complex. J Biol Chem 291:22534–22543CrossRefPubMedPubMedCentralGoogle Scholar
  6. Lou J, Finegan TΜ, Mohsen P, Hatton TA, Laibinis PE (1999) Fluorescence-based thermometry: principles and applications. Rev Anal Chem 18:235–284CrossRefGoogle Scholar
  7. Qu Y, Gharbi N, Yuan X, Olsen JR, Blicher P, Dalhus B, Brokstad KA, Lin B, Oyan AM, Zhang W et al (2016) Axitinib blocks Wnt/beta-catenin signaling and directs asymmetric cell division in cancer. Proc Natl Acad Sci U S A 113:9339–9344CrossRefPubMedPubMedCentralGoogle Scholar
  8. Rainard JM, Pandarakalam GC, McElroy SP (2018) Using microscale thermophoresis to characterize hits from high-throughput screening: a European lead factory perspective. SLAS Discov Adv Life Sci RD 23:225–241Google Scholar
  9. Ross D, Gaitan M, Locascio LE (2001) Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal Chem 73:4117–4123CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies’ Association (EBSA) 2018

Authors and Affiliations

  1. 1.NanoTemper Technologies GmbHMunichGermany

Section editors and affiliations

  • Alan Cooper
    • 1
  1. 1.School of Chemistry, University of GlasgowGlasgowUK