Encyclopedia of Earthquake Engineering

2015 Edition
| Editors: Michael Beer, Ioannis A. Kougioumtzoglou, Edoardo Patelli, Siu-Kui Au

Seismic Tomography of Volcanoes

  • Ivan KoulakovEmail author
  • Nikolay Shapiro
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-35344-4_51

Synonyms

Ambient noise tomography; Body-wave tomography; Magma sources; Seismic observations on volcanoes; Seismic properties of crust; Seismic tomography

Introduction

Volcano tomography is a branch of geophysics oriented to studying the deep structures beneath volcanoes by means of seismic tomography. Seismic tomographyis a method for reconstruction of continuous distribution of seismic parameters in 1D, 2D, 3D, or 4D (space and time) using the characteristics of seismic waves traveling between sources and receivers. Seismic parameters to be found in tomographic inversion are in most cases velocities of P and S seismic waves (P and S velocities). For volcanoes, one of the key parameters appears to be the Vp/Vs ratio which can be used to evaluate the content of fluids and melts. Besides the velocity distributions, seismic tomography may provide the information on the anisotropy of seismic parameters which helps studying regional stresses and space-oriented geological structures. In...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The contribution of Ivan Koulakov is supported by the Russian Scientific Foundation (grant #14-17-00430).

References

  1. Achauer U, Evans JR, Stauber DA (1988) High-resolution seismic tomography of compressional wave velocity structure at Newberry Volcano, Oregon Cascade Range. J Geophys Res Solid Earth (1978–2012) 93(B9):10135–10147CrossRefGoogle Scholar
  2. Aki K, Christoffersson A, Husebye ES (1977) Determination of the three-dimensional seismic structure of the lithosphere. J Geophys Res 82(2):277–296CrossRefGoogle Scholar
  3. Aoki Y, Takeo M, Aoyama H, Fujimatsu J, Matsumoto S, Miyamachi H, Yamawaki T (2009) P-wave velocity structure beneath Asama Volcano, Japan, inferred from active source seismic experiment. J Volcanol Geotherm Res 187(3):272–277CrossRefGoogle Scholar
  4. Boué P, Poli P, Campillo M, Pedersen H, Briand X, Roux P (2013) Teleseismic correlations of ambient seismic noise for deep global imaging of the. Earth Geophys J Int 194(2):844–848. doi:10.1093/gji/ggt160CrossRefGoogle Scholar
  5. Brenguier F, Shapiro NM, Campillo M, Nercessian A, Ferrazzini V (2007) 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophys Res Lett 34:L02305. doi:10.1029/2006GL028586CrossRefGoogle Scholar
  6. Brenguier F, Shapiro N, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008) Toward forecasting volcanic eruptions using seismic noise. Nat Geosci 1(2):126–130CrossRefGoogle Scholar
  7. Brenguier F, Clarke D, Aoki Y, Shapiro NM, Campillo M, Ferrazzini V (2011) Monitoring volcanoes using seismic noise correlations. C R Geosci 343:633–638. doi:10.1016/j.crte.2010.12.010CrossRefGoogle Scholar
  8. Campillo M, Roux P, Shapiro NM (2011) Correlations of seismic ambient noise to image and to monitor the Solid Earth. In: Gupta HK (ed) Encyclopedia of solid earth geophysics. Springer, Dordrecht, pp 1230–1235CrossRefGoogle Scholar
  9. Chiarabba C, Amato A, Boschi E, Barberi F (2000) Recent seismicity and tomographic modeling of the Mount Etna plumbing system. J Geophys Res Solid Earth (1978–2012) 105(B5):10923–10938CrossRefGoogle Scholar
  10. Ellsworth WL, Koyanagi RY (1977) Three-dimensional crust and mantle structure of Kilauea Volcano, Hawaii. J Geophys Res 82(33):5379–5394CrossRefGoogle Scholar
  11. Evans JR, Zucca JJ (1988) Active high−resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake Volcano, Northern California Cascade Range. J Geophys Res Solid Earth (1978–2012) 93(B12):15016–15036CrossRefGoogle Scholar
  12. Foulger GR, Toomey DR (1989) Structure and evolution of the Hengill-Grensdalur Volcanic Complex, Iceland: geology, geophysics, and seismic tomography. J Geophys Res Solid Earth (1978–2012) 94(B12):17511–17522CrossRefGoogle Scholar
  13. García-Yeguas A, Koulakov I, Ibáñez JM, Rietbrock A (2012) High resolution 3D P wave velocity structure beneath Tenerife Island (Canary Islands, Spain) based on tomographic inversion of active-source data. J Geophys Res 117, B09309, doi:10.1029/2011JB008970Google Scholar
  14. Gouédard P, Stehly L, Brenguier F, Campillo M, Colin de Verdière Y, Larose E, Margerin L, Roux P, Sanchez-Sesma FJ, Shapiro NM, Weaver RL (2008) Cross-correlation of random fields: mathematical approach and applications. Geophys Prospect 56:375–393CrossRefGoogle Scholar
  15. Husen S, Kissling E (2001) Local earthquake tomography between rays and waves: fat ray tomography. Phys Earth Planet In 123(2):127–147CrossRefGoogle Scholar
  16. Koulakov I (2009a) LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms. Bull Seismol Soc Am 99(1):194–214. doi:10.1785/0120080013CrossRefGoogle Scholar
  17. Koulakov I (2009b) Out-of-network events can be of great importance for improving results of local earthquake tomography. Bull Seismol Soc Am 99(4):2556–2563. doi:10.1785/0120080365CrossRefGoogle Scholar
  18. Koulakov I (2013) Studying deep sources of volcanism using multiscale seismic tomography. J Volcanol Geotherm Res 257:205–226. doi:10.1016/j.jvolgeores.2013.03.012CrossRefGoogle Scholar
  19. Koulakov I, Gordeev EI, Dobretsov NL, Vernikovsky VA, Senyukov S, Jakovlev A (2011) Feeding volcanoes of the Klyuchevskoy group from the results of local earthquake tomography. Geophys Res Lett 38:L09305. doi:10.1029/2011GL046957CrossRefGoogle Scholar
  20. Koulakov I, West M, Izbekov P (2013a) Fluid ascent during the 2004–2005 unrest at Mt. Spurr inferred from seismic tomography. Geophys Res Lett. doi:10.1002/grl.50674.Google Scholar
  21. Koulakov I, Gordeev EI, Dobretsov NL, Vernikovsky VA, Senyukov S, Jakovlev A, Jaxybulatov K (2013b) Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography. J Volcanol Geothermal Res (available online). doi:10.1016/j.jvolgeores.2012.10.014Google Scholar
  22. Lees JM (1992) The magma system of Mount St. Helens: non-linear high-resolution P-wave tomography. J Volcanol Geotherm Res 53(1):103–116CrossRefGoogle Scholar
  23. Lin FC, Li D, Clayton RW, Hollis D (2013) High-resolution 3D shallow crustal structure in Long Beach, California: application of ambient noise tomography on a dense seismic array. Geophysics 78(4):Q45–Q56. doi:10.1190/geo2012-0453.1CrossRefGoogle Scholar
  24. Longuet-Higgins MS (1950) A theory of the origin of microseisms. R Soc Lond Philos Trans Ser A 243:1–35MathSciNetzbMATHCrossRefGoogle Scholar
  25. Masterlark T, Haney M, Dickinson H, Fournier T, Searcy C (2010) Rheologic and structural controls on the deformation of Okmok volcano, Alaska: FEMs, InSAR, and ambient noise tomography. J Geophys Res 115:B02409. doi:10.1029/2009JB006324Google Scholar
  26. Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung SH (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303(5656):338–343CrossRefGoogle Scholar
  27. Nagaoka Y, Nishida K, Aoki Y, Takeo M, Ohminato T (2012) Seismic imaging of magma chamber beneath an active volcano. Earth Planet Sci Lett 333–334:1–8. doi:10.1016/j.epsl.2012.03.034CrossRefGoogle Scholar
  28. Paige CC, Saunders MA (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans Math Soft 8:43–71MathSciNetzbMATHCrossRefGoogle Scholar
  29. Patanè D, Barberi G, Cocina O, De Gori P, Chiarabba C (2006) Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science 313(5788):821–823CrossRefGoogle Scholar
  30. Paulatto M, Minshull TA, Baptie B, Dean S, Hammond JOS, Henstock T, Voight B (2010) Upper crustal structure of an active volcano from refraction/reflection tomography, Montserrat, Lesser Antilles. Geophys J Int 180(2):685–696CrossRefGoogle Scholar
  31. Power JA, Villasenor A, Benz HM (1998) Seismic image of the Mount Spurr magmatic system. Bull Volcanol 60(1):27–37CrossRefGoogle Scholar
  32. Ritzwoller MH, Lin FC, Shen W (2011) Ambient noise tomography with a large seismic array. Compte Rendus Geosci. doi:10.1016/j.crte.2011.03.007Google Scholar
  33. Sens-Schönfelder C, Wegler U (2006) Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys Res Lett 33:L21302CrossRefGoogle Scholar
  34. Shapiro NM, Campillo M, Stehly L, Ritzwoller M (2005) High resolution surface wave tomography from ambient seismic noise. Science 307:1615–1618CrossRefGoogle Scholar
  35. Sharp ADL, Davis PM, Gray F (1980) A low velocity zone beneath Mount Etna and magma storage. Nature 287:587–591CrossRefGoogle Scholar
  36. Stankiewicz J, Ryberg T, Haberland C, Fauzi, Natawidjaja D (2010) Lake Toba volcano magma chamber imaged by ambient seismic noise tomography. Geophys Res Lett 37:L17306. doi:10.1029/2010GL044211CrossRefGoogle Scholar
  37. Stauber DA, Green SM, Iyer HM (1988) Three-dimensional P velocity structure of the crust below Newberry Volcano, Oregon. J Geophy Res Solid Earth (1978–2012) 93(B9):10095–10107CrossRefGoogle Scholar
  38. Thurber CH (1983) Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J Geophys Res Solid Earth (1978–2012) 88(B10):8226–8236CrossRefGoogle Scholar
  39. Thurber CH (1984) Seismic detection of the summit magma complex of Kilauea volcano, Hawaii. Science 223(4632):165–167CrossRefGoogle Scholar
  40. Villasenor A, Benz HM, Filippi L, De Luca G, Scarpa R, Patanè G, Vinciguerra S (1998) Three-dimensional P-wave velocity structure of Mt. Etna, Italy. Geophys Res Lett 25(11):1975–1978CrossRefGoogle Scholar
  41. Zandomeneghi D, Barclay AH, Almendros J, Ibáñez JM, Wilcock WSD, Ben-Zvi T (2009) Crustal structure of deception island volcano from p-wave seismic tomography: tectonic and volcanic implications. J Geophys Res 114:B06310Google Scholar
  42. Zollo AEA, Gasparini P, Virieux J, Le Meur H, De Natale G, Biella G, Vilardo G (1996) Seismic evidence for a low-velocity zone in the upper crust beneath Mount Vesuvius. Science 274(5287):592–594CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Trofimuk Institute of Petroleum Geology and GeophysicsSB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institut de Physique du Globe de Paris Laboratoire de SismologieParisFrance