Skip to main content

Seismic Sources from Landslides and Glaciers

  • Reference work entry
  • First Online:
  • 84 Accesses

Synonyms

Earthquakes generated by landslides and glaciers; Seismic activity of landslides and glaciers

Introduction

With few exceptions, the discovery and analysis of global earthquakes with landslides and glaciers as sources did not begin until the twenty-first century. This may come as a surprise considering that the magnitudes of such earthquakes have reached and even exceeded M = 5. In this essay, we describe the specific characteristics of these seismic signals and their source locations. We describe the source mechanisms and discuss the information that can be derived from interpretation of the data. In the case of landslides, the source process represents a severe hazard, and the same may be true for glaciers.

Although seismic signals from landslides and glaciers are observed at intermediate scales, we will jump from magnitudes of M ~ 5 to M < 0. The deployment of seismic stations on the target landslide or glacier is necessary to observe such weak signals. Systematic research...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alley RB, Blankenship DD, Bentley CR, Rooney ST (1987) Till beneath Ice Stream B. Till deformation: evidence and implications. J Geophys Res 92(B9):8921–8929

    Article  Google Scholar 

  • Amitrano D, Grasso JR, Senfaute G (2005) Seismic precursory patterns before a cliff collapse and critical point Phenomena. Geophys Res Lett 32, L08314. doi:10.1029/2004GL022270

    Article  Google Scholar 

  • Bindschadler RA, King MA, Alley EB, Anandakrishnan S, Padman L (2003) Tidally controlled stick–slip discharge of a West Antarctic ice stream. Science 301(5636):1087–1089. doi:10.1126/science.1087231

    Google Scholar 

  • Brantley SR, Myers B (2000) Mount St. Helens – from the 1980 eruption to 2000. U.S. Geological Survey Fact Sheet, FS-036-00, 2 p. http://pubs.er.usgs.gov/publication/fs03600

  • Brückl E, Parotidis M (2005) Prediction of slope instabilities due to deep-seated gravitational creep. Nat Hazards Earth Syst Sci 5:155–172. SRef-ID: 1684-9981/nhess/2005-5-155

    Google Scholar 

  • Brückl E, Brunner FK, Lang E, Mertl S, Müller M, Stary U (2013) The Gradenbach observatory-monitoring deep-seated gravitational slope deformation by geodetic, hydrological, and seismological methods. Landslides. doi:10.1007/s10346-013-0417-1

    Google Scholar 

  • Burgess EW, Forster RR, Larsen CF, Braun M (2012) Surge dynamics on Bering Glacier, Alaska, in 2008–2011. Cryosphere 6:1251–1262. doi:10.5194/tc-6-1251-2012

    Article  Google Scholar 

  • Chen X, Shearer PM, Walter F, Fricker HA (2011) Seventeen Antarctic seismic events detected by global surface waves and a possible link to calving events from satellite images. J Geophys Res 116, B06311. doi:10.1029/2011JB008262

    Google Scholar 

  • Cuffey KM, Paterson WSB (2010) The physics of glaciers, 4th Edition. Academic Press, ISBN 978012333694614, p 704

    Google Scholar 

  • Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes – the 1991 Randa rockslide. Int J Rock Mech Min Sci 41:69–87

    Article  Google Scholar 

  • Ekström G, Stark CP (2013) Simple scaling of catastrophic landslide dynamics. Science 339(6126):1416–1419. doi:10.1126/science.1232887

    Article  Google Scholar 

  • Ekström G, Nettles M, Abers GA (2003) Glacial earthquakes. Science 302:22–624. doi:10.1126/science.1088057

    Google Scholar 

  • Faillettaz J, Funk M, Sornette D (2011) Icequakes coupled with surface displacements for predicting glacier break-off. J Glaciol 57(203):453–460

    Article  Google Scholar 

  • Gischig V, Moore JR, Evans KF, Amann F, Loew S (2011) Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability. J Geophys Res 116:F04011. doi:10.1029/2011JF002007

    Google Scholar 

  • Gomberg J, Schulz W, Bodin P, Kean J (2011) Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory. J Geophys Res 116, B09404. doi:10.1029/2011JB008304

    Google Scholar 

  • Goodman RE, Kieffer DS (2000) Behaviour of rock in slopes. J Geotech Geoenviron 128(8):675–684

    Article  Google Scholar 

  • Helmstetter A, Garambois S (2010) Seismic monitoring of Séchilienne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J Geophys Res 115, F03016. doi:10.1029/2009JF001532

    Google Scholar 

  • Kanamori H, Given JW (1982) Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens – a terrestrial monopole? J Geophys Res 87:5422–5432. doi:10.1029/JB087iB07p05422. ISSN: 0148–0227

    Google Scholar 

  • Kawakatsu H (1989) Centroid single force inversion of seismic waves generated by landslides. J Geophys Res 94:12,363–12,374. doi:10.1029/89JB01118. ISSN: 0148–0227

    Google Scholar 

  • Mertl S (2015) Characterization of local seismic events on the deep-seated events gravitational slobe deformation Gradenbach. PhD thesis, Vienna University of Technology, p 176

    Google Scholar 

  • Moore J, Albee W (1981) Topographical and structural changes, March-July 1980 – photogrammetric data. In: Lipman P, Mullineaux D (eds) The 1980 eruptions of Mount St. Helens Washington. Geological Survey Professional Paper 1250, pp 123–134

    Google Scholar 

  • Nettles M, Ekström G (2010) Glacial earthquakes in Greenland and Antarctica. Annu Rev Earth Planet Sci 38:467–491. doi:10.1146/annurev-earth-040809-152414

    Article  Google Scholar 

  • Nettles M, Larsen TB, Elósegui P, Hamilton GS, Stearns LA, Ahlstrøm AP, Davis JL, Andersen ML, de Juan J, Khan SA, Stenseng L, Ekström G, Forsberg R (2008) Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys Res Lett 35, L24503. doi:10.1029/2008GL036127

    Article  Google Scholar 

  • Spillmann T, Maurer H, Green AG, Heincke B, Willenberg H, Husen S (2007) Microseismic investigation of an unstable mountain slope in the Swiss Alps. J Geophys Res 112, B07301. doi:10.1029/2006JB004723

    Google Scholar 

  • Tsai VC, Ekström G (2007) Analysis of glacial earthquakes. J Geophys Res 113:F03S22. doi:10.1029/2006JF000596

    Google Scholar 

  • Tsai VC, Rice JR, Fahnestock M (2008) Possible mechanisms for glacial earthquakes. J Geophys Res 113, F03014. doi:10.1029/2007JF000944

    Google Scholar 

  • Voight B (1981) Time scale for the first moments of the May 18 eruption. In: Lipman P, Mullineaux D (eds) The 1980 eruptions of Mount St. Helens Washington. Geological Survey Professional Paper 1250, pp 68–86

    Google Scholar 

  • Walter F (2009) Seismic activity on Gornergletscher during Gornersee outburst floods. PhD thesis, DISS.ETHNo 18184, ETH Zürich, p 135

    Google Scholar 

  • Walter F, Dreger DS, Clinton JF, Deichmann N, Funk M (2010) Evidence for near-horizontal tensile faulting at the base of Gornergletscher, a Swiss Alpine Glacier. Bull Seismol Soc Am 100(2):458–472. doi:10.1785/0120090083

    Article  Google Scholar 

  • Walter M, Arnhardt C, Joswig M (2012) Seismic monitoring of rockfalls, slide quakes, and fissure development at the Super-Sauze mudslide, French Alps. Eng Geol 128:12–22

    Article  Google Scholar 

  • Weginger S (2012) Detektion und Lokalisierung seismischer Signale zur Überwachung der Massenbewegung Steinlehnen. Master thesis, Vienna University of Technology, p 96

    Google Scholar 

  • West ME, Larsen C, Truffer M, O’Neel S, LeBlanc L (2010) Glacier microseismicity. Geology 38(4):319–322. doi:10.1130/G30606.1

    Article  Google Scholar 

  • Winberry JP, Anandakrishnan S, Wiens DA, Alley RB (2013) Nucleation and seismic Tremor associated with the glacial earthquakes of Whillans Ice Stream, Antartica. Geophys Res Lett 40:312–315. doi:10.1002/grl.50130

    Article  Google Scholar 

  • Zangerl C, Eberhardt E, Schönlaub H, Anegg J (2007) Deformation behavior of deep-seated rockslides in crystalline rock. In: Rock mechanics: proceedings of the 1st Canada-US rock mechanics symposium, Vancouver, 27–31 May 2007. doi:10.1201/NOE0415444019-c112

    Google Scholar 

  • Zischinsky U (1969) Über Sackungen. Rock Mech 1:30–52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewald Brückl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Brückl, E., Binder, D., Mertl, S. (2015). Seismic Sources from Landslides and Glaciers. In: Beer, M., Kougioumtzoglou, I.A., Patelli, E., Au, SK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35344-4_385

Download citation

Publish with us

Policies and ethics