Encyclopedia of Earthquake Engineering

2015 Edition
| Editors: Michael Beer, Ioannis A. Kougioumtzoglou, Edoardo Patelli, Siu-Kui Au

Seismic Sources from Landslides and Glaciers

  • Ewald BrücklEmail author
  • Daniel Binder
  • Stefan Mertl
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-35344-4_385
  • 72 Downloads

Synonyms

Earthquakes generated by landslides and glaciers; Seismic activity of landslides and glaciers

Introduction

With few exceptions, the discovery and analysis of global earthquakes with landslides and glaciers as sources did not begin until the twenty-first century. This may come as a surprise considering that the magnitudes of such earthquakes have reached and even exceeded M = 5. In this essay, we describe the specific characteristics of these seismic signals and their source locations. We describe the source mechanisms and discuss the information that can be derived from interpretation of the data. In the case of landslides, the source process represents a severe hazard, and the same may be true for glaciers.

Although seismic signals from landslides and glaciers are observed at intermediate scales, we will jump from magnitudes of M ~ 5 to M < 0. The deployment of seismic stations on the target landslide or glacier is necessary to observe such weak signals. Systematic research...

This is a preview of subscription content, log in to check access.

References

  1. Alley RB, Blankenship DD, Bentley CR, Rooney ST (1987) Till beneath Ice Stream B. Till deformation: evidence and implications. J Geophys Res 92(B9):8921–8929CrossRefGoogle Scholar
  2. Amitrano D, Grasso JR, Senfaute G (2005) Seismic precursory patterns before a cliff collapse and critical point Phenomena. Geophys Res Lett 32, L08314. doi:10.1029/2004GL022270CrossRefGoogle Scholar
  3. Bindschadler RA, King MA, Alley EB, Anandakrishnan S, Padman L (2003) Tidally controlled stick–slip discharge of a West Antarctic ice stream. Science 301(5636):1087–1089. doi:10.1126/science.1087231Google Scholar
  4. Brantley SR, Myers B (2000) Mount St. Helens – from the 1980 eruption to 2000. U.S. Geological Survey Fact Sheet, FS-036-00, 2 p. http://pubs.er.usgs.gov/publication/fs03600
  5. Brückl E, Parotidis M (2005) Prediction of slope instabilities due to deep-seated gravitational creep. Nat Hazards Earth Syst Sci 5:155–172. SRef-ID: 1684-9981/nhess/2005-5-155Google Scholar
  6. Brückl E, Brunner FK, Lang E, Mertl S, Müller M, Stary U (2013) The Gradenbach observatory-monitoring deep-seated gravitational slope deformation by geodetic, hydrological, and seismological methods. Landslides. doi:10.1007/s10346-013-0417-1Google Scholar
  7. Burgess EW, Forster RR, Larsen CF, Braun M (2012) Surge dynamics on Bering Glacier, Alaska, in 2008–2011. Cryosphere 6:1251–1262. doi:10.5194/tc-6-1251-2012CrossRefGoogle Scholar
  8. Chen X, Shearer PM, Walter F, Fricker HA (2011) Seventeen Antarctic seismic events detected by global surface waves and a possible link to calving events from satellite images. J Geophys Res 116, B06311. doi:10.1029/2011JB008262Google Scholar
  9. Cuffey KM, Paterson WSB (2010) The physics of glaciers, 4th Edition. Academic Press, ISBN 978012333694614, p 704Google Scholar
  10. Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes – the 1991 Randa rockslide. Int J Rock Mech Min Sci 41:69–87CrossRefGoogle Scholar
  11. Ekström G, Stark CP (2013) Simple scaling of catastrophic landslide dynamics. Science 339(6126):1416–1419. doi:10.1126/science.1232887CrossRefGoogle Scholar
  12. Ekström G, Nettles M, Abers GA (2003) Glacial earthquakes. Science 302:22–624. doi:10.1126/science.1088057Google Scholar
  13. Faillettaz J, Funk M, Sornette D (2011) Icequakes coupled with surface displacements for predicting glacier break-off. J Glaciol 57(203):453–460CrossRefGoogle Scholar
  14. Gischig V, Moore JR, Evans KF, Amann F, Loew S (2011) Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability. J Geophys Res 116:F04011. doi:10.1029/2011JF002007Google Scholar
  15. Gomberg J, Schulz W, Bodin P, Kean J (2011) Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory. J Geophys Res 116, B09404. doi:10.1029/2011JB008304Google Scholar
  16. Goodman RE, Kieffer DS (2000) Behaviour of rock in slopes. J Geotech Geoenviron 128(8):675–684CrossRefGoogle Scholar
  17. Helmstetter A, Garambois S (2010) Seismic monitoring of Séchilienne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J Geophys Res 115, F03016. doi:10.1029/2009JF001532Google Scholar
  18. Kanamori H, Given JW (1982) Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens – a terrestrial monopole? J Geophys Res 87:5422–5432. doi:10.1029/JB087iB07p05422. ISSN: 0148–0227Google Scholar
  19. Kawakatsu H (1989) Centroid single force inversion of seismic waves generated by landslides. J Geophys Res 94:12,363–12,374. doi:10.1029/89JB01118. ISSN: 0148–0227Google Scholar
  20. Mertl S (2015) Characterization of local seismic events on the deep-seated events gravitational slobe deformation Gradenbach. PhD thesis, Vienna University of Technology, p 176Google Scholar
  21. Moore J, Albee W (1981) Topographical and structural changes, March-July 1980 – photogrammetric data. In: Lipman P, Mullineaux D (eds) The 1980 eruptions of Mount St. Helens Washington. Geological Survey Professional Paper 1250, pp 123–134Google Scholar
  22. Nettles M, Ekström G (2010) Glacial earthquakes in Greenland and Antarctica. Annu Rev Earth Planet Sci 38:467–491. doi:10.1146/annurev-earth-040809-152414CrossRefGoogle Scholar
  23. Nettles M, Larsen TB, Elósegui P, Hamilton GS, Stearns LA, Ahlstrøm AP, Davis JL, Andersen ML, de Juan J, Khan SA, Stenseng L, Ekström G, Forsberg R (2008) Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys Res Lett 35, L24503. doi:10.1029/2008GL036127CrossRefGoogle Scholar
  24. Spillmann T, Maurer H, Green AG, Heincke B, Willenberg H, Husen S (2007) Microseismic investigation of an unstable mountain slope in the Swiss Alps. J Geophys Res 112, B07301. doi:10.1029/2006JB004723Google Scholar
  25. Tsai VC, Ekström G (2007) Analysis of glacial earthquakes. J Geophys Res 113:F03S22. doi:10.1029/2006JF000596Google Scholar
  26. Tsai VC, Rice JR, Fahnestock M (2008) Possible mechanisms for glacial earthquakes. J Geophys Res 113, F03014. doi:10.1029/2007JF000944Google Scholar
  27. Voight B (1981) Time scale for the first moments of the May 18 eruption. In: Lipman P, Mullineaux D (eds) The 1980 eruptions of Mount St. Helens Washington. Geological Survey Professional Paper 1250, pp 68–86Google Scholar
  28. Walter F (2009) Seismic activity on Gornergletscher during Gornersee outburst floods. PhD thesis, DISS.ETHNo 18184, ETH Zürich, p 135Google Scholar
  29. Walter F, Dreger DS, Clinton JF, Deichmann N, Funk M (2010) Evidence for near-horizontal tensile faulting at the base of Gornergletscher, a Swiss Alpine Glacier. Bull Seismol Soc Am 100(2):458–472. doi:10.1785/0120090083CrossRefGoogle Scholar
  30. Walter M, Arnhardt C, Joswig M (2012) Seismic monitoring of rockfalls, slide quakes, and fissure development at the Super-Sauze mudslide, French Alps. Eng Geol 128:12–22CrossRefGoogle Scholar
  31. Weginger S (2012) Detektion und Lokalisierung seismischer Signale zur Überwachung der Massenbewegung Steinlehnen. Master thesis, Vienna University of Technology, p 96Google Scholar
  32. West ME, Larsen C, Truffer M, O’Neel S, LeBlanc L (2010) Glacier microseismicity. Geology 38(4):319–322. doi:10.1130/G30606.1CrossRefGoogle Scholar
  33. Winberry JP, Anandakrishnan S, Wiens DA, Alley RB (2013) Nucleation and seismic Tremor associated with the glacial earthquakes of Whillans Ice Stream, Antartica. Geophys Res Lett 40:312–315. doi:10.1002/grl.50130CrossRefGoogle Scholar
  34. Zangerl C, Eberhardt E, Schönlaub H, Anegg J (2007) Deformation behavior of deep-seated rockslides in crystalline rock. In: Rock mechanics: proceedings of the 1st Canada-US rock mechanics symposium, Vancouver, 27–31 May 2007. doi:10.1201/NOE0415444019-c112Google Scholar
  35. Zischinsky U (1969) Über Sackungen. Rock Mech 1:30–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Geodesy and GeoinformationTU WienViennaAustria
  2. 2.Zentralanstalt für Meteorologie und GeodynamikViennaAustria
  3. 3.Mertl Research GmbHViennaAustria