Skip to main content

Substructuring Methods for Finite Element Analysis

  • Reference work entry
  • First Online:
  • 125 Accesses

Synonyms

Component mode synthesis; Domain decomposition; Hybrid simulations

Introduction

The motivations for employing substructuring in finite element modeling vary from reduction of computational time, modal synthesis using substructure modes, combining experimental and numerical modeling approaches, equitable sharing of resources in parallel computing environment, and treatment of global/local nonlinearities. The details of methods and tools accordingly also vary. An overview of related issues is presented in this entry.

Problems of computational structural mechanics of realistic systems involve inversion and eigenanalysis of large-size matrices and solutions of a large number of coupled ordinary differential equations or algebraic equations. These are computationally demanding tasks, and development of methods to reduce the computational efforts remains relevant notwithstanding advances in computational hardware. This is particularly true in problems of uncertainty quantification,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn HT, Kallinderis Y (2006) Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. J Comput Phys 219(2):671–696

    Article  MathSciNet  MATH  Google Scholar 

  • Apiwattanalunggarn P, Shaw SW, Pierre C (2005) Component mode synthesis using nonlinear normal modes. Nonlinear Dyn 41(1–3):17–46

    Article  MathSciNet  MATH  Google Scholar 

  • Bennighof JK, Kaplan MF (1998) Frequency window implementation of adaptive multi-level substructuring. J Vib Acoust 120(2):409–418

    Article  Google Scholar 

  • Bursi OS, Wagg D (eds) (2008) Modern testing techniques for structural systems: dynamics and control. Springer, New York

    Google Scholar 

  • Chen C, Ricles J (2010) Tracking error-based servohydraulic actuator adaptive compensation for real-time hybrid simulation. J Struct Eng 136(4):432–440

    Article  Google Scholar 

  • Chen C, Ricles JM (2012) Large-scale real-time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation. Earthq Eng Struct Dyn 41:549–569

    Article  Google Scholar 

  • Craig RR Jr (1995) Substructure methods in vibration. J Mech Des 117:207

    Article  Google Scholar 

  • Ewins DJ (2000) Modal testing: theory, practice and application. Research Studies Press, Baldock

    Google Scholar 

  • Farhat C, Lesoinne M, Pierson K (2000) A scalable dual–primal domain decomposition method. Numer Linear Algebra Appl 7:687–714

    Article  MathSciNet  MATH  Google Scholar 

  • Gao X, Castaneda N, Dyke SJ (2013) Real time hybrid simulation: from dynamic system, motion control to experimental error. Earthq Eng Struct Dyn 42:815–832

    Article  Google Scholar 

  • Ghosh D, Avery P, Farhat C (2009) FETI-preconditioned conjugate gradient method for large-scale stochastic finite element problems. Int J Numer Methods Eng 80(6–7):914–931

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes TJ, Pister KS, Taylor RL (1979) Implicit-explicit finite elements in nonlinear transient analysis. Comput Methods Appl Mech Eng 17:159–182

    Article  MATH  Google Scholar 

  • Hurty WC (1965) Dynamic analysis of structural systems using component modes. AIAA J 3(4):678–685

    Article  Google Scholar 

  • Karniadakis GE, Kirby RM II (2003) Parallel scientific computing in C++ and MPI: a seamless approach to parallel algorithms and their implementation. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Kerschen G, Peeters M, Golnival JC, Vakakis AF (2009) Nonlinear normal modes, part I: a useful framework for structural dynamicist. Mech Syst Signal Process 23:170–194

    Article  Google Scholar 

  • Klerk DD, Rixen DJ, Voormeeren SN (2008) General framework for dynamic substructuring: history, review and classification of techniques. AIAA J 46(5):1169–1181

    Article  Google Scholar 

  • Maia NMM, de Silva JMM (eds) (1997) Theoretical and experimental modal analysis. Research Studies Press, Taunton

    Google Scholar 

  • Nakashima M (2001) Development, potential, and limitations of real–time online (pseudo–dynamic) testing. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 359(1786):1851–1867

    Article  Google Scholar 

  • Papalukopoulos C, Natsiavas S (2007) Dynamics of large scale mechanical models using multilevel substructuring. J Comput Nonlinear Dyn 2(1):40–51

    Article  Google Scholar 

  • Prakash A, Hjelmstad KD (2004) A FETI-based multi-time-step coupling method for Newmark schemes in structural dynamics. Int J Numer Methods Eng 61:2183–2204

    Article  MATH  Google Scholar 

  • Sajeeb R, Manohar CS, Roy D (2009) A conditionally linearized Monte Carlo filter in nonlinear structural dynamics. Int J Nonlinear Mech 44:776–790

    Article  Google Scholar 

  • Saouma VE, Sivaselvan MV (eds) (2008) Hybrid simulation: theory, implementation and applications. CRC Press, London

    Google Scholar 

  • Severn RT, Brownjohn JMW, Dumanoglu AA, Taylor CA (1989) A review of dynamic testing methods for civil engineering structures. In: Proceedings of the conference on civil engineering dynamics, University of Bristol, pp 1–24

    Google Scholar 

  • Takanashi K, Nakashima M (1987) Japanese activities on on-line testing. J Eng Mech 113(7):1014–1032

    Article  Google Scholar 

  • Williams MS, Blakeborough A (2001) Laboratory testing of structures under dynamic loads: an introductory review. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 359(1786):1651–1669

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abhinav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Abhinav, S., Ghosh, D., Manohar, C.S. (2015). Substructuring Methods for Finite Element Analysis. In: Beer, M., Kougioumtzoglou, I.A., Patelli, E., Au, SK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35344-4_267

Download citation

Publish with us

Policies and ethics