Encyclopedia of Earthquake Engineering

2015 Edition
| Editors: Michael Beer, Ioannis A. Kougioumtzoglou, Edoardo Patelli, Siu-Kui Au

Source Characterization for Earthquake Early Warning

  • Aldo ZolloEmail author
  • Gaetano Festa
  • Antonio Emolo
  • Simona Colombelli
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-35344-4_244


Earthquake early warning; Earthquake ground motion; Earthquake source observation; Real-time location; Real-time magnitude


Earthquake Early Warning Systems (EEWS) are real-time, seismic monitoring infrastructures that are able to provide a rapid notification of the potential damaging effects of an impending earthquake. This objective is achieved through the fast telemetry and processing of data from dense instrument arrays deployed in the source region of the event of concern (regional EEWS) or surrounding/at the target infrastructure (front-detection or site-specific EEWS).

A regional EEWS is based on a dense sensor network covering a portion or the entire area that is threatened by earthquakes. The relevant source parameters (event location and magnitude) are estimated from the early portion of recorded signals (initial P-waves) and are used to predict, with a quantified confidence, a ground-motion intensity measure at a distant site where a target structure of...

This is a preview of subscription content, log in to check access.


  1. Allen RM, Kanamori H (2003) The potential for earthquake early warning in southern California. Science 3:685–848Google Scholar
  2. Allen RM, Ziv A (2011) Application of real-time GPS to earthquake early warning. Geophys Res Lett 38, L16310. doi:10.1029/2011GL047947CrossRefGoogle Scholar
  3. Allen RM, Brown H, Hellweg M, Khainovski O, Lombard P, Neuhauser D (2009) Real-time earthquake detection and hazard assessment by ElarmS across California. Geophys Res Lett 36, L00B08. doi:10.1029/2008GL036766CrossRefGoogle Scholar
  4. Boore DM, Stephens CD, Joyner WB (2002) Comments on baseline correction of digital strong-motion data: examples from the 1999 hector mine, California, earthquake. Bull Seism Soc Am 92:1543–1560. doi:10.1785/0120000926CrossRefGoogle Scholar
  5. Böse M, Ionescu C, Wenzel F (2007) Earthquake early warning for Bucharest, Romania: novel and revised scaling relations. Geophys Res Lett 34, L07302. doi:10.1029/2007GL029396CrossRefGoogle Scholar
  6. Colombelli S, Amoroso O, Zollo A, Kanamori H (2012a) Test of a threshold-based earthquake early warning using Japanese data. Bull Seismol Soc Am 102:1266–1275. doi:10.1785/0120110149CrossRefGoogle Scholar
  7. Colombelli S, Zollo A, Festa G, Kanamori H (2012b) Early magnitude and potential damage zone estimates for the great Mw 9 Tohoku-Oki earthquake. Geophys Res Lett 39, L22306. doi:10.1029/2012GL053923CrossRefGoogle Scholar
  8. Colombelli S, Allen RM, Zollo A (2013) Application of real-time GPS to earthquake early warning in subduction and strike-slip environments. J Geophys Res 118:3448–3461. doi:10.1002/jgrb.50242CrossRefGoogle Scholar
  9. Crowell BW, Bock Y, Melgar D (2012) Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophys Res Lett 39, L09305. doi:10.1029/2012GL051318CrossRefGoogle Scholar
  10. Cua G, Fisher M, Heaton T, Wiemer S (2009) Real-time performance of the virtual seismologist earthquake early warning algorithm in southern California seism. Res Lett 80:740–747. doi:10.1785/gssrl.80.5.740Google Scholar
  11. Dreger DS, Gee L, Lombard P, Murray MH, Romanowicz B (2005) Rapid finite-source analysis and near-fault strong ground motions: application to the 2003 Mw 6.5 San Simeon and 2004 Mw 6.0 Parkfield Earthquakes. Seism Res Lett 76:40–48. doi:10.1785/gssrl.76.1.40CrossRefGoogle Scholar
  12. Espinosa-Aranda JM, Cuéllar A, Rodríguez FH, Frontana B, Ibarrola G, Islas R, García A (2011) The seismic alert system of Mexico (SASMEX): progress and its current applications. Soil Dyn Earth Eng 31:2154–2162. doi:10.1016/j.soildyn.2010.09.011CrossRefGoogle Scholar
  13. Festa G, Lancieri M, Zollo A (2008) Magnitude estimation from early radiated energy. Geophys Res Lett 35, L22307. doi:10.1029/2008GL035576CrossRefGoogle Scholar
  14. Kanamori H (2005) Real-time seismology and earthquake damage mitigation. Ann Rev Earth Planet Sci 33:195–214CrossRefGoogle Scholar
  15. Lancieri M, Zollo A (2008) A Bayesian approach to the real time estimation of magnitude from the early P- and S-wave displacement peaks. J Geophys Res 113, B12302. doi:10.1029/2007JB005386CrossRefGoogle Scholar
  16. Nakamura Y (1988) On the urgent earthquake detection and alarm system (UrEDAS) In: Proceedings 9th world conference on earthquake engineering, Tokyo-Kyoto, Japan vol 7, pp 673–678Google Scholar
  17. Ohta Y et al (2012) Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (Mw 9.0). J Geophys Res 117:B02311. doi:10.1029/2011JB008750Google Scholar
  18. Satriano C, Lomax A, Zollo A (2008) Real-time evolutionary earthquake location for seismic early warning. Bull Seimc Soc Am 98(3):1482–1494CrossRefGoogle Scholar
  19. Satriano C, Elia L, Martino C, Lancieri M, Zollo A, Iannaccone G (2010) PRESTo, the earthquake early warning system for southern Italy: concepts, capabilities and future perspectives. Soil Dyn Earthq Eng 31(2):137–153. doi:10.1016/j.soildyn.2010.06.008CrossRefGoogle Scholar
  20. Wald DJ, Quitoriano V, Heaton T, Kanamori H (1999) Relationships between peak ground acceleration, peak ground velocity and modified mercalli intensity in California. Earthq Spectra 15:557–564CrossRefGoogle Scholar
  21. Wright TJ, Houlié N, Hildyard M, Iwabuchi T (2012) Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: the 2011 Tohoku-Oki (Japan) earthquake. Geophys Res Lett 39, L12302CrossRefGoogle Scholar
  22. Wu YM, Kanamori H (2005) Rapid assessment of damage potential of earthquake in Taiwan from beginning of P-waves. Bull Seism Soc Am 95:1181–1185. doi:10.1785/0120040193CrossRefGoogle Scholar
  23. Wu YM, Kanamori H (2008) Development of an earthquake early warning system using real-time strong motion signals. Sensors 8:1–9CrossRefGoogle Scholar
  24. Wu YM, Zhao L (2006) Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning. Geophys Res Lett 33, L16312. doi:10.1029/2006GL026871CrossRefGoogle Scholar
  25. Yamada M (2014) Estimation of fault rupture extent using near-source records for earthquake early warning. In Wenzel F, Zschau J (eds) Early warning for geological disasters. Advanced technologies in earth sciences. Springer, Berlin/Heidelberg, p 29ff. doi:10.1007/978-3-642-12233-0_2Google Scholar
  26. Yamada M, Heaton T, Beck J (2007) Real-time estimation of fault rupture extent using neat-source versus far-source classification. Bull Seism Soc Am 97:1890–1910. doi:10.1785/0120060243CrossRefGoogle Scholar
  27. Zollo A, Lancieri M, Nielsen S (2006) Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion. Geophys Res Lett 33, L23312. doi:10.1029/2006GL027795CrossRefGoogle Scholar
  28. Zollo A, Amoroso O, Lancieri M, Wu YM, Kanamori H (2010) A threshold-based earthquake early warning using dense accelerometer networks. Geophys J Int 183:963–974CrossRefGoogle Scholar
  29. Zollo A, Colombelli S, Elia L, Emolo A, Festa G, Iannaccone G, Martino C, Gasparini P (2014) An integrated regional and on-site earthquake early warning system for southern Italy: concepts, methodologies and performances. In: Wenzel F, Zschau J (eds) Early warning for geological disasters - scientific methods and current practices. Springer-Verlag Berlin Heidelberg, DordrechtGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Aldo Zollo
    • 1
    Email author
  • Gaetano Festa
    • 1
  • Antonio Emolo
    • 1
  • Simona Colombelli
    • 1
  1. 1.Department of PhysicsUniversity of Naples Federico II, Federico II – AMRA S.c.ar.lNapoliItaly