Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso

Trace Metals

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_5422-1



Trace metals are metallic elements on the periodic table that are found in low concentrations in both aqueous environments (seawater, freshwater, mine waters) and geologic samples (minerals, rocks, and mine tailings). In aqueous environments, trace metals include any metal element present at concentrations between 10−15 mol/L (1 fM) and 10−5 mol/L (10 μM). In geological samples, trace metals are present in abundances of <0.1% by weight and typically quantified in either ppm (mg/kg) or ppb (μg/kg). With regard to trace metals in astrobiology and geobiology, there is an increased focus on transition metals in columns 3–12 of the periodic table.


Trace metals are ubiquitous components of aqueous environments, geological samples, and biological processes. In biological systems, trace metals play critical roles as reaction centers and structural components in metalloenzymes or can even be used as terminal electron acceptors in redox-driven...


Metalloenzymes Biosignatures Oxygenation Redox reactions Trace metals 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Anbar AD, Knoll AH (2002) Proterozoic Ocean chemistry and evolution: a bioinorganic bridge? Science 297: 1137–1142ADSCrossRefGoogle Scholar
  2. Asael D, Rouxel OJ, Poulton SW et al (2018) Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the early Paleoproterozoic. Am J Sci 318:275–299.  https://doi.org/10.2475/03.2018.01ADSCrossRefGoogle Scholar
  3. Bruland KW, Middag R, Lohan MC (2014) Controls of trace metals in seawater. In: Holland HD, Turekian K (eds) Treatise on geochemistry, vol 8, 2nd edn. Elsevier, Amsterdam, pp 19–51CrossRefGoogle Scholar
  4. Chi Fru E, Rodríguez NP, Partin CA et al (2016) Cu isotopes in marine black shales record the Great Oxidation Event. Proc Natl Acad Sci 113:4941–4946.  https://doi.org/10.1073/pnas.1523544113ADSCrossRefGoogle Scholar
  5. Dupont CL, Butcher A, Valas RE et al (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci 107:10567–10572.  https://doi.org/10.1073/pnas.0912491107ADSCrossRefGoogle Scholar
  6. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206.  https://doi.org/10.1126/science.281.5374.200CrossRefGoogle Scholar
  7. Frausto da Silva JJR, Williams RJ (2001) The biological chemistry of the elements: the inorganic chemistry of life, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  8. Isson TT, Love GD, Dupont CL et al (2018) Tracking the rise of eukaryotes to ecological dominance with zinc isotopes. Geobiology 276:70–352.  https://doi.org/10.1111/gbi.12289CrossRefGoogle Scholar
  9. John S, Kunzmann M, Townsend EJ, Rosenberg AD (2017) Zinc and cadmium stable isotopes in the geological record: a case study from the post-snowball Earth Nuccaleena cap dolostone. Palaeogeog Palaeoclimatol Palaeoecol 466:202–208.  https://doi.org/10.1016/j.palaeo.2016.11.003ADSCrossRefGoogle Scholar
  10. Konhauser KO, Pecoits E, Lalonde SV et al (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458:750–753.  https://doi.org/10.1038/nature07858ADSCrossRefGoogle Scholar
  11. Konhauser KO, Lalonde SV, Planavsky NJ et al (2011) Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478:369–373.  https://doi.org/10.1038/nature10511ADSCrossRefGoogle Scholar
  12. Konhauser KO, Robbins, LJ, Pecoits E et al (2015) The Archean nickel famine revisited. Astrobiology 15:804–815. https://doi.org/10.1089/ast.2015.1301ADSCrossRefGoogle Scholar
  13. Kunzmann M, Halverson GP, Sossi PA et al (2013) Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology 41:27–30.  https://doi.org/10.1130/g33422.1ADSCrossRefGoogle Scholar
  14. Large RR, Halpin JA, Danyushevsky LV et al (2014) Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Planet Sci Lett 389:209–220.  https://doi.org/10.1016/j.epsl.2013.12.020ADSCrossRefGoogle Scholar
  15. Liu XM, Kah LC, Knoll AH et al (2016) Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates. Geochem Perspect Lett 2:24–34.  https://doi.org/10.7185/geochemlet.1603CrossRefGoogle Scholar
  16. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315.  https://doi.org/10.1038/nature13068ADSCrossRefGoogle Scholar
  17. Mills MM, Ridame C, Davey M et al (2004) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292–294.  https://doi.org/10.1038/nature02550ADSCrossRefGoogle Scholar
  18. Mukherjee I, Large RR, Corkrey R, Danyushevsky LV (2018) The boring billion, a slingshot for complex life on earth. Sci Rep 8:1–7.  https://doi.org/10.1038/s41598-018-22695-xCrossRefGoogle Scholar
  19. Partin CA, Lalonde SV, Planavsky NJ et al (2013a) Uranium in iron formations and the rise of atmospheric oxygen. Chem Geol 362:82–90.  https://doi.org/10.1016/j.chemgeo.2013.09.005ADSCrossRefGoogle Scholar
  20. Partin CA, Bekker A, Planavsky NJ et al (2013b) Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet Sci Lett 369–370:284–293.  https://doi.org/10.1016/j.epsl.2013.03.031ADSCrossRefGoogle Scholar
  21. Ragsdale SW, Kumar M (1996) Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev 96:2515–2539CrossRefGoogle Scholar
  22. Reinhard CT, Planavsky NJ, Robbins LJ et al (2013) Proterozoic Ocean redox and biogeochemical stasis. Proc Natl Acad Sci 110:5357–5362.  https://doi.org/10.1073/pnas.1208622110ADSCrossRefGoogle Scholar
  23. Robbins LJ, Lalonde SV, Saito MA et al (2013) Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology 11:295–306.  https://doi.org/10.1111/gbi.12036CrossRefGoogle Scholar
  24. Sahoo SK, Planavsky NJ, Kendall B et al (2012) Ocean oxygenation in the wake of the Marinoan glaciation. Nature 488:546–549.  https://doi.org/10.1038/nature11445ADSCrossRefGoogle Scholar
  25. Scott C, Lyons TW, Bekker A et al (2008) Tracing the stepwise oxygenation of the Proterozoic Ocean. Nature 452:456–459.  https://doi.org/10.1038/nature06811ADSCrossRefGoogle Scholar
  26. Scott C, Planavsky NJ, Dupont CL et al (2013) Bioavailability of zinc in marine systems through time. Nat Geosci 6:125–128.  https://doi.org/10.1038/ngeo1679ADSCrossRefGoogle Scholar
  27. Sheen AI, Kendall B, Reinhard CT et al (2018) A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic Ocean anoxia. Geochim Cosmochim Acta 227:75–95.  https://doi.org/10.1016/j.gca.2018.01.036ADSCrossRefGoogle Scholar
  28. Stüeken EE, Buick R, Guy BM, Koehler MC (2015) Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520:666–669.  https://doi.org/10.1038/nature14180ADSCrossRefGoogle Scholar
  29. Swanner ED, Planavsky NJ, Lalonde SV et al (2014) Cobalt and marine redox evolution. Earth Planet Sci Lett 390:253–263.  https://doi.org/10.1016/j.epsl.2014.01.001ADSCrossRefGoogle Scholar
  30. Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531.  https://doi.org/10.1038/22941ADSCrossRefGoogle Scholar
  31. Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Annu Rev Mar Sci 1:43–63.  https://doi.org/10.1146/annurev.marine.010908.163712ADSCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.University of AlbertaEdmontonCanada
  2. 2.Yale UniversityNew HavenUSA