Advertisement

Cerebellar Agenesis

  • Romina Romaniello
  • Renato BorgattiEmail author
Living reference work entry
  • 10 Downloads

Abstract

Cerebellar agenesis is an extremely rare condition in which patients show minute cerebellar tissue, usually corresponding to remnants of the lower cerebellar peduncles, anterior vermal lobules, and flocculi. Clinical presentation of cerebellar agenesis may cover a broad phenotypic spectrum of disabilities including not only motor disorders but also cognitive abilities, language disabilities, and affective disorders. The severity and range of motor, cognitive, and psychiatric impairments appears to be correlated with the earliness, localization, and extent of the agenesis of the cerebellum. Patients with congenital malformations display, for example, a more severe and less specific impairment than patients with acquired cerebellar lesions in adult life. The most severe clinical picture is one of patients with involvement of the phylogenetically most ancient structures (complete or partial cerebellar vermis agenesis) as they display severe pervasive impairments in social and communication skills (autism or autistic-like behavior) and in behavior modulation (self-injury and aggressiveness) and marked delays in language acquisition, especially in language comprehension. On the contrary, when the lesions are confined to phylogenetically more recent structures such as cerebellar hemispheres, the clinical picture is characterized by mild cognitive impairment or borderline IQ, good social functioning, and context adjustment abilities with a more favorable prognosis.

In conclusion, it is possible to argue that cerebellar agenesis, in spite of having an extraordinary neuroradiological picture, is a clinical condition compatible with a productive although limited life, especially if the affected person has the opportunity to undergo a rehabilitation program at an early stage of his life.

Keywords

Cerebellum Agenesis Hypoplasia Development Posterior fossa Neuroimaging Embryological Genetic Acquired Disruption Vermis Hemispheres Motor Cognitive Midbrain-hindbrain Aplasia Classification Malformation Pathogenetic Dysarthria Executive Visuospatial Language Non-motor Functions Learning Attention Memory Affect Hypotonia (30) 

References

  1. Aldinger KA, Doherty D (2016) The genetics of cerebellar malformations. Semin Fetal Neonatal Med 21:321–332PubMedPubMedCentralGoogle Scholar
  2. Aldinger KA, Lehmann OJ, Hudgins L et al (2009) FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p24.3 Dandy-Walker malformation. Nat Genet 41:1037–1042PubMedPubMedCentralGoogle Scholar
  3. Alkan O, Kizilkilic O, Yildirim T (2009) Malformations of the midbrain and hindbrain: a retrospective study and review of the literature. Cerebellum 8:355–365PubMedGoogle Scholar
  4. Al-Shammari M, Al-Husain M, Al-Kharfy T, Alkuraya FS (2011) A novel PTF1A mutation in a patient with severe pancreatic and cerebellar involvement. Clin Genet 80:196–198PubMedGoogle Scholar
  5. Altman NR, Naidich TP, Braffman BH (1992) Posterior fossa malformations. Am J Neuroradiol 13:691–724PubMedGoogle Scholar
  6. Anton E, Zingerle H (1914) Genaue Beschreibung eines. Falles von beiderseitigem. Kleinhimmangel. Arch Psychiatr Berl 54:8–75Google Scholar
  7. Arrigoni F, Romaniello R, Nordio A et al (2015) Learning to live without the cerebellum. Neuroreport 26:809–813PubMedGoogle Scholar
  8. Ashraf O, Jabeen S, Khan A, Shaheen F (2016) Primary cerebellar agenesis presenting as isolated cognitive impairment. J Pediatr Neurosci 11:150–152PubMedPubMedCentralGoogle Scholar
  9. Baker RC, Graves GO (1931) Cerebellar agenesis. Arch Neurol Psychiatr 25:548–555Google Scholar
  10. Ballarati L, Rossi E, Bonati MT et al (2007) 13q deletion and central nervous system anomalies: further insights from karyotype-phenotype analyses of 14 patients. J Med Genet 44:e60PubMedPubMedCentralGoogle Scholar
  11. Baraitser M (1990) Cerebellar syndromes. In: Baraitser M (ed) The genetics of neurological disorders, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  12. Barkovich AJ (1998) Neuroimaging manifestations and classification of congenital muscular dystrophies. Am J Neuroradiol 19:1389–1396PubMedGoogle Scholar
  13. Barkovich AJ, Frieden I, Williams M (1994) MR of neurocutaneous melanosis. Am J Neuroradiol 15:859–867PubMedGoogle Scholar
  14. Barkovich AJ, Millen KJ, Dobyns WB (2007) A developmental classification of malformations of the brainstem. Ann Neurol 62:625–639PubMedGoogle Scholar
  15. Barkovich AJ, Millen KJ, Dobyns WB (2009) A developmental and genetic classification for midbrain-hindbrain malformations. Brain 132:3199–3230PubMedPubMedCentralGoogle Scholar
  16. Barth PG (2000) Pontocerebellar hypoplasia-how many types? Eur J Paediatr Neurol 4:161–162PubMedGoogle Scholar
  17. Beaton A, Mariën P (2010) Language, cognition and cerebellum: grappling with an enigma. Cortex 46(7):811–820PubMedGoogle Scholar
  18. Bellini C, Massocco D, Serra G (2000) Prenatal cocaine exposure and the expanding spectrum of brain malformations. Arch Intern Med 160:2393PubMedGoogle Scholar
  19. Boland E, Clayton-Smith J, Woo VG et al (2007) Mapping of deletion and translocation breakpoints in q44 implicates the serine/threonine kinase AKT3 in postnatal microcephaly and agenesis of corpus callosum. Am J Hum Genet 81:292–303PubMedPubMedCentralGoogle Scholar
  20. Bolduc ME, Du Plessis AJ, Sullivan N (2011) Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child Neurol 53:409–416PubMedGoogle Scholar
  21. Boltshauser E (2004) Cerebellum-small brain but large confusion: a review of selected cerebellar malformations and disruptions. Am J Med Genet 126A:376–385PubMedGoogle Scholar
  22. Boltshauser E (2008) Cerebellar hypoplasias. Disorders of segmentation of the neural tube. In: Handbook of clinical neurology, vol 87 (3rd series). Malformation of the nervous system (Ed Elsevier)Google Scholar
  23. Borgatti R, Tavano A, Cristofori G et al (2004) Language development in children with cerebellar malformations. In: Fabbro F (ed) Neurogenic language disorders in children. Elsevier, AmsterdamGoogle Scholar
  24. Borrell H (1884) Cerebellar agenesis. Arch f Psychiatr 15:286Google Scholar
  25. Bosemani T, Poretti A (2016) Cerebellar disruptions and neurodevelopmental disabilities. Semin Fetal Neonatal Med 21:339–348PubMedGoogle Scholar
  26. Botez-Marquard T, Leveillé J, Botez MI (1994) Neuropsychological functioning in unilateral cerebellar damage. Can J Neurol Sci 21:353–357PubMedGoogle Scholar
  27. Boyd JD (1940) A case of neocerebellar hypoplasia. J Anat 74:557Google Scholar
  28. Boyd CA (2009) Cerebellar agenesis revisited. Brain 133:941–944PubMedGoogle Scholar
  29. Brielmaier J (2016) The woman born without a cerebellum: a real-life case adapted for use in an undergraduate developmental and systems neuroscience course. J Undergrad Neurosci Educ 15(1):C1–C3. eCollection 2016 FallPubMedPubMedCentralGoogle Scholar
  30. Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80:807–815PubMedGoogle Scholar
  31. Casartelli L, Federici A, Cesareo A et al (2017) Role of the cerebellum in high stages of motor planning hierarchy. J Neurophysiol 117:1474–1482PubMedPubMedCentralGoogle Scholar
  32. Casartelli L, Riva M, Villa L, Borgatti R (2018) Insights from perceptual, sensory, and motor functioning in autism and cerebellar primary disturbances: are there reliable markers for these disorders? Neurosci Biobehav Rev 95:263–279Google Scholar
  33. Chang B, Piao X, Bodell A et al (2003) Bilateral frontoparietal polymicrogyria: clinical and radiological features in 10 families with linkage to chromosome 16. Ann Neurol 53:596–606PubMedGoogle Scholar
  34. Chedda MG, Sherman JC, Schmahmann JD (2002) Neurology, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology 58:A356Google Scholar
  35. Chen CP, Chen CP, Shih JC (2005) Association of partial trisomy 9p and the Dandy Walker malformation. Am J Med Genet 132A:111–112PubMedGoogle Scholar
  36. Clouchoux C, Guizard N, Evans AC et al (2012) Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol 206:173.e1e8Google Scholar
  37. Cohen I (1942) Agenesis of the cerebellum (verified by operation). J Mt. Sinai Hosp 8:441–446Google Scholar
  38. Combettes M (1831) Absence complète du cervelet, des pédoncules postérieurs et de la protubérance cérébrale chez une jeune fille morte dans sa onzième anneé. Bull Soc Anat de Paris 5:148–157Google Scholar
  39. Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2:611–623PubMedGoogle Scholar
  40. Cotes C, Bonfante E, Lazor J et al (2015) Congenital basis of posterior fossa anomalies. Neuroradiol J 28:238–253PubMedPubMedCentralGoogle Scholar
  41. Courchesne E (1997) Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol 7:269–278PubMedGoogle Scholar
  42. Courchesne E, Townsend J, Akshoomoff NA et al (1994) Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci 108:848–865PubMedGoogle Scholar
  43. D’Mello AM, Stoodley CJ (2015) Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci 9:408PubMedPubMedCentralGoogle Scholar
  44. Dahlem K, Valko Y, Schmahmann JD, Lewis RF (2016) Cerebellar contributions to self-motion perception: evidence from patients with congenital cerebellar agenesis. J Neurophysiol 115:2280–2285PubMedPubMedCentralGoogle Scholar
  45. Davis EE, Pitchford NJ, Jaspan T et al (2010) Development of cognitive and motor function following cerebellar tumour injury sustained in early childhood. Cortex 46:919–932PubMedGoogle Scholar
  46. Dhillon AS, Chapman S, Milford DV (2001) Cerebellar defect associated with Schimke immune-osseous dysplasia. Eur J Pediatr 160:372–274PubMedGoogle Scholar
  47. Doherty D, Millen KJ, Barkovich AJ (2013) Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics. Lancet Neurol 12:381–393PubMedPubMedCentralGoogle Scholar
  48. Fabbro F (2000) Introduction to language and cerebellum. J Neurolinguistics 13:83–94Google Scholar
  49. Fabbro F, Tavano A, Corti S et al (2004) Long-term neuropsychological deficits after cerebellar infarctions in two young twins. Neuropsychologia 42:536–545PubMedGoogle Scholar
  50. Ferrier D (1876) The functions of the brain, Chapter VI. In: Functions of the cerebellum. Smith, Elder, LondonGoogle Scholar
  51. Fiez JA, Petersen SE, Cheney MK et al (1992) Impaired non-motor learning and error detection associated with cerebellar damage. Brain 115:155–168PubMedGoogle Scholar
  52. Freeze HH (2001) Update and perspective on congenital disorders of glycosylation. Glycobiology 11:129R–143RPubMedGoogle Scholar
  53. Fusari R (1891) Note sur quelques cas d’atrophie et d’hypertrophie du cervelet. Mem v Accad d sc d Inst Bologna 2:643–658Google Scholar
  54. Gabbay M, Ellard S, De Franco E, Moisés RS (2017) Pancreatic agenesis due to compound heterozygosity for a novel enhancer and truncating mutation in the PTF1A gene. J Clin Res Pediatr Endocrinol 9:274–277PubMedPubMedCentralGoogle Scholar
  55. Gardner RJM, Coleman LT, Mitchell LA et al (2001) Near-total absence of the cerebellum. Neuropediatrics 32:62–68PubMedGoogle Scholar
  56. Gelal FM, Kalaycı TÖ, Çelebisoy M (2016) Clinical and MRI findings of cerebellar agenesis in two living adult patients. Ann Indian Acad Neurol 19:255–257PubMedPubMedCentralGoogle Scholar
  57. Gilbert C, Coleman M (1992) The biology of the autistic syndromes. McKeit Press, LondonGoogle Scholar
  58. Glickstein M (1994) Cerebellar agenesis. Brain 117:1209–1212PubMedGoogle Scholar
  59. Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382PubMedGoogle Scholar
  60. Gordon N (2007) The cerebellum and cognition. Eur J Paediatr Neurol 11:232–234PubMedGoogle Scholar
  61. Grinberg I, Millen KJ (2005) The ZIC gene family in development and disease. Clin Genet 67:290–296PubMedGoogle Scholar
  62. Herholz K, Thiel A, Wienhard W et al (1996) Individual functional anatomy of verb generation. NeuroImage 3:185–194PubMedGoogle Scholar
  63. Hill AD, Chang BS, Hill RS et al (2007) A 2-Mb critical region implicated in the microcephaly associated with terminal 1q deletion syndrome. Am J Med Genet 143A:1692–1698PubMedGoogle Scholar
  64. Hong SE, Shugart YY, Huang DT et al (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia (LCH) is associated with human reelin gene mutations. Nat Genet 26:93–96PubMedGoogle Scholar
  65. Houghton JA, Swift GH, Shaw-Smith C et al (2016) Isolated pancreatic aplasia due to a hypomorphic PTF1A mutation. Diabetes 65:2810–2815PubMedPubMedCentralGoogle Scholar
  66. Hoveyda N, Shield JP, Garrett C et al (1999) Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome. J Med Genet 36:700–704PubMedPubMedCentralGoogle Scholar
  67. Huissoud C, Rudigoz RC, Bisch C et al (2009) Complete cerebellar agenesis: a very rare abnormality of the posterior fossa. Ultrasound Obstet Gynecol 33:730–731PubMedGoogle Scholar
  68. Jacob FD, Goez HR (2011) Preservation of language in the ataxic infant in a case of cerebellar agenesis. Can J Neurol Sci 38:143–144PubMedGoogle Scholar
  69. Jalali A, Aldinger J, Chary A et al (2008) Linkage to chromosome 2q36.1 in autosomal dominant Dandy-Walker malformation with occipital cephalocele and evidence for genetic heterogeneity. Hum Genet 123:237–245PubMedPubMedCentralGoogle Scholar
  70. Jansen A, Floel A, Van Randenborgh J et al (2005) Crossed cerebro-cerebellar language dominance. Hum Brain Mapp 24:165–172PubMedGoogle Scholar
  71. Karmiloff-Smith A (1995) Beyond modularity: a developmental perspective on cognitive science. MIT Press, Cambridge, MAGoogle Scholar
  72. Kier G, Winchester BG, Clayton P (1999) Carbohydrate deficient glycoprotein syndromes: inborn errors of protein glycosylation. Ann Clin Biochem 36:20–36Google Scholar
  73. Kim SG, Ugurbil K, Strick PL (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265:949–951PubMedGoogle Scholar
  74. Kirschen MP, Davis-Ratner MS, Milner MW (2008) Verbal memory impairments in children after cerebellar tumor resection. Behav Neurol 20:39–53PubMedGoogle Scholar
  75. Laforce R Jr, Doyon J (2001) Distinct contribution of the striatum and cerebellum to motor learning. Brain Cogn 45:189–211PubMedGoogle Scholar
  76. Laforce R Jr, Doyon J (2002) Differential role for the striatum and cerebellum in response to novel movements using a motor learning paradigm. Neuropsychologia 40:512–517PubMedGoogle Scholar
  77. Leech RW, Johnson SH, Brumback RA (1997) Agenesis of cerebellum associated with arhinencephaly. Clin Neuropathol 16:90–97PubMedGoogle Scholar
  78. Leestma JE, Torres JV (2000) Unappreciated agenesis of cerebellum in an adult. Am J of Forensic Med Pathol 21:155–161Google Scholar
  79. Leiner HC, Leiner AL, Dow RS (1991) The human cerebro-cerebellar system: its computing, cognitive and language skills. Behav Brain Res 44:113–128PubMedGoogle Scholar
  80. Lemon RN, Edgley SA (2010) Life without a cerebellum. Brain 133:652–654PubMedGoogle Scholar
  81. Leto K, Arancillo M, Becker EB (2016) Consensus paper: cerebellar development. Cerebellum 15:789–828PubMedGoogle Scholar
  82. Levisohn L, Cronin-Golomb A, Schmahmann JD (2000) Neuropsychological consequences of cerebellar tumor resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 123:1041–1050PubMedGoogle Scholar
  83. Leyden E (1876) Citation in Stewart RM (1956) Cerebellar agenesis. J Ment Sci 102:67–77Google Scholar
  84. Limperopoulos C, Soul JS, Gauvreau K et al (2005) Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 115:688–695PubMedGoogle Scholar
  85. Limperopoulos C, Bassan H, Gauvreau K et al (2007) Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 120:584–593PubMedGoogle Scholar
  86. Limperopoulos C, Chilingaryan G, Guizard N et al (2010) Cerebellar injury in the premature infant is associated with impaired growth of specific cerebral regions. Pediatr Res 68:145–150PubMedGoogle Scholar
  87. Loeser JD, Lemire RJ, Alvord J (1972) The development of the folia in the human cerebellar vermis. Anat Rec 173:109–114PubMedGoogle Scholar
  88. Mariën P, Engelborghs S, Fabbro F et al (2001) The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang 79:580–600PubMedGoogle Scholar
  89. McCormack WM, Shen JJ, Curry SM et al (2003) Partial deletions of the long arm of chromosome 13 associated with holoprosencephaly and the Dandy-Walker malformation. Am J Med Genet 118:384–389Google Scholar
  90. Melaragno MI, Brunoni D, Patricio FR et al (1992) A patient with tetrasomy 9p, Dandy-Walker cyst and Hirschsprung disease. Ann Genet 35:79–84PubMedGoogle Scholar
  91. Meola A, Fernandez-Miranda JC (2015) Peduncles without cerebellum: the cerebellar agenesis. Eur Neurol 74(3–4):162.  https://doi.org/10.1159/000441055. Epub 2015 Oct 10CrossRefPubMedGoogle Scholar
  92. Micalizzi A, Poretti A, Romani M (2016) Clinical, neuroradiological and molecular characterization of cerebellar dysplasia with cysts (Poretti-Boltshauser syndrome). Eur J Hum Genet 24:1262–1267PubMedPubMedCentralGoogle Scholar
  93. Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18:12–19PubMedPubMedCentralGoogle Scholar
  94. Millen KJ, Steshina EY, Iskusnykh IY, Chizhikov VV (2014) Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proc Natl Acad Sci U S A 111:E1777–E1786PubMedPubMedCentralGoogle Scholar
  95. Miyata H, Chute DJ, Fink J et al (2004) Lissencephaly with agenesis of corpus callosum and rudimentary dysplastic cerebellum: a subtype of lissencephaly with cerebellar hypoplasia. Acta Neuropathol 107:69–81PubMedGoogle Scholar
  96. Moberget T, Andersson S, Lundar T et al (2015) Long-term supratentorial brain structure and cognitive function following cerebellar tumour resections in childhood. Neuropsychologia 69:218–231PubMedGoogle Scholar
  97. Mormina E, Briguglio M, Morabito R (2016) A rare case of cerebellar agenesis: a probabilistic constrained spherical deconvolution tractographic study. Brain Imaging Behav 10:158–167PubMedGoogle Scholar
  98. Murdoch BE (2010) The cerebellum and language: historical perspective and review. Cortex 46(7):858–868PubMedGoogle Scholar
  99. Najm J, Horn D, Wimplinger I et al (2008) Mutation of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet 40:1065–1067PubMedGoogle Scholar
  100. Niesen CE (2002) Malformations of the posterior fossa: current perspectives. Semin Pediatr Neurol 9:320–334PubMedGoogle Scholar
  101. Nowak DA, Timmann D, Hermsdorfer J (2007) Dexterity in cerebellar agenesis. Neuropsychologia 45:696–703PubMedGoogle Scholar
  102. Oegema R, Cushion TD, Phelps IG et al (2015) Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes. Hum Mol Genet 24:5313–5325PubMedPubMedCentralGoogle Scholar
  103. Parisi MA, Dobyns WB (2003) Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80:36–53PubMedGoogle Scholar
  104. Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. Am J Neuroradiol 23:1074–1087PubMedGoogle Scholar
  105. Petersen SE, Fiez JA (1993) The processing of single words studied with positron emission tomography. Annu Rev Neurosci 16:509PubMedGoogle Scholar
  106. Petersen SE, Fox PT, Posner MI et al (1989) Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1:153–170PubMedGoogle Scholar
  107. Philphot J, Pennock J, Cowan F et al (2000) Brain magnetic resonance imaging abnormalities in merosin-positive congenital muscular dystrophy. Eur J Paediatr Neurol 4:109–114Google Scholar
  108. Poretti A (2011) Cognitive functions in children with cerebellar malformations. Dev Med Child Neurol 53:389PubMedGoogle Scholar
  109. Poretti A, Boltshauser E (2015) Terminology in morphological anomalies of the cerebellum does matter. Cerebellum Ataxias 2:8PubMedPubMedCentralGoogle Scholar
  110. Poretti A, Boltshauser E, Huisman TA (2016) Cerebellar and brainstem malformations. Neuroimaging Clin N Am 26:341–357PubMedGoogle Scholar
  111. Poretti A, Prayer D, Boltshauser E (2009) Morphological spectrum of prenatal cerebellar disruption. Eur J Paediatr Neurol 13:397–407PubMedGoogle Scholar
  112. Poretti A, Risen S, Meoded A et al (2013) Cerebellar agenesis: an extreme form of cerebellar disruption in preterm neonates. J Pediatr Neuroradiol 2:163–167Google Scholar
  113. Poretti A, Wolf NI, Boltshauuser E (2008) Differential diagnosis of cerebellar atrophy in childhood. Eur J Paediatr Neurol 12(3):155–167PubMedGoogle Scholar
  114. Priestly DP (1920) Complete absence of the cerebellum. Lancet 2:1302Google Scholar
  115. Reardon W, Donnai D (2007) Dysmorphology demystified. Arch Dis Child Fetal Neonatal Ed 92:F225–F229PubMedPubMedCentralGoogle Scholar
  116. Riccardi VM, Marcus ES (1978) Congenital hydrocephalus and cerebellar agenesis. Clin Genet 13:443–447PubMedGoogle Scholar
  117. Richter S, Dimitrova A, Hein-Kropp C et al (2005) Cerebellar agenesis II: motor and language functions. Neurocase 11:103–113PubMedGoogle Scholar
  118. Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development. Evidence from a series of children surgically treated for posterior fossa tumors. Brain 123:1051–1061PubMedGoogle Scholar
  119. Romaniello R, Arrigoni F, Panzeri E et al (2017) Tubulin-related cerebellar dysplasia: definition of a distinct pattern of cerebellar malformation. Eur Radiol 27:5080–5092PubMedGoogle Scholar
  120. Ronconi L, Casartelli L, Carna S et al (2017) When one is enough: impaired multisensory integration in cerebellar agenesis. Cereb Cortex 27:2041–2051PubMedGoogle Scholar
  121. Ross ME, Swanson K, Dobyns WB (2001) Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformations. Neuropediatrics 32:256–263PubMedGoogle Scholar
  122. Salman MS, Tsai P (2016) The role of the pediatric cerebellum in motor functions, cognition, and behavior: a clinical perspective. Neuroimaging Clin N Am 26:317–329PubMedPubMedCentralGoogle Scholar
  123. Schmahmann ID (1991) An emerging concept: the cerebellar contribution to higher function. Arch Neurol 48:1178–1187PubMedGoogle Scholar
  124. Schmahmann JD (1996) From movement to though: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4:174–198PubMedGoogle Scholar
  125. Schmahmann JD (1997) The cerebellum and cognition. Int Rev Neurobiol, vol 41. Academic Press, San DiegoGoogle Scholar
  126. Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260PubMedGoogle Scholar
  127. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579PubMedGoogle Scholar
  128. Schmahmann JD, Weilburg JB, Sherman JC (2007) The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum 6:254–267PubMedGoogle Scholar
  129. Scott RB, Stoodley CJ, Anslow P et al (2001) Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol 43:685–691PubMedGoogle Scholar
  130. Sellick GS, Barker KT, Stolte-Dijkstra I et al (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305PubMedGoogle Scholar
  131. Sener RN (1995) Cerebellar agenesis versus vanishing cerebellum in Chiari II malformation. Comput Med Imaging Graph 19:491–494PubMedGoogle Scholar
  132. Sener RN, Jinkins JR (1993) Subtotal agenesis of the cerebellum in an adult. MRI demonstration. Neuroradiology 35:286–287PubMedGoogle Scholar
  133. Silveri C, Leggio MG, Molinari M (1993) The cerebellum contributes to language production: a case of agrammatic speech following a right cerebellar lesion. Neurology 44:2047–2050Google Scholar
  134. Silveri MC, Di Betta AM, Filippini V et al (1998) Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain 121:2175–2187PubMedGoogle Scholar
  135. Squier W, Hope PL, Lindenbaum RH (1990) Neocerebellar hypoplasia in a neonate following intra-uterine exposure to anticonvulsivants. Dev Med Child Neurol 32:737–742PubMedGoogle Scholar
  136. Steinlin M, Zangger B, Boltshauser E (1998) Non-progressive congenital ataxia with or without cerebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol 40:148–154PubMedGoogle Scholar
  137. Steinlin M, Styger M, Boltshauser E (1999) Cognitive impairments in patients with congenital nonprogressive cerebellar ataxia. Neurology 53:966–973PubMedGoogle Scholar
  138. Sternberg C (1912) Ueber vollstandigen Defekt des Kleinhirnes. Verhandl Deutsch Path Gesellsch 15:359–363Google Scholar
  139. Stewart RM (1956) Cerebellar agenesis. J Ment Sci 102:67–77PubMedGoogle Scholar
  140. Stoodley CJ (2016) The cerebellum and neurodevelopmental disorders. Cerebellum 15:34–37PubMedPubMedCentralGoogle Scholar
  141. Stoodley CJ, Limperopoulos C (2016) Structure-function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin Fetal Neonatal Med 21(5):356–364PubMedPubMedCentralGoogle Scholar
  142. Tavano A, Borgatti R (2010) Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex 46(7):907–918PubMedGoogle Scholar
  143. Tavano A, Fabbro F, Borgatti R (2004) Speaking without the cerebellum. Proct Int Lang Cogn Conf offs HarbourGoogle Scholar
  144. Tavano A, Fabbro F, Borgatti R (2007a) Speaking without the cerebellum: language skills in a young adult with near total absence of the cerebellum. In: Schalley A, Khlentzos D (eds) Mental states: evolution, function, nature. John Benjamin, AmsterdamGoogle Scholar
  145. Tavano A, Fabbro F, Borgatti R (2007b) Language and social communication in children with cerebellar dysgenesis. Folia Phoniatr Logop 59:201–209PubMedGoogle Scholar
  146. Tavano A, Grasso R, Gagliardi C et al (2007c) Disorders of cognitive and affective development in cerebellar malformations. Brain 130:2646–2660PubMedGoogle Scholar
  147. Tennstedt A (1965) Kleinhirnaplaise beim Erwachsenen. Zentralbl Allg Pathol 107:301–304PubMedGoogle Scholar
  148. Thach TW (1997) Context-response linkage. Int Rev Neurobiol 41:599–611PubMedGoogle Scholar
  149. Timmann D, Dimitrova A, Hein-Kropp C et al (2003) Cerebellar agenesis: clinical, neuropsychological and MR findings. Neurocase 9(5):402–413PubMedGoogle Scholar
  150. Timmann D, Drepper J, Frings M et al (2010) The human cerebellum contributes to motor, emotional and cognitive associative learning: a review. Cortex 46:845–857PubMedGoogle Scholar
  151. Titomanlio L, Romano A, Del Giudice E (2005) Cerebellar agenesis. Neurology 64:E21PubMedGoogle Scholar
  152. Titomanlio L, De Brasi D, Romano A et al (2006) Partial cerebellar hypoplasia in a patient with Prader-Willi syndrome. Acta Paediatr 95:861–863PubMedGoogle Scholar
  153. Tutak E, Satar M, Yapicioglu H et al (2009) A Turkish newborn infant with cerebellar agenesis/neonatal diabetes mellitus and PTF1A mutation. Genet Couns 20(2):147–152PubMedGoogle Scholar
  154. Uhl M, Pawlik H, Laudenberger J et al (1998) MR findings in pontocerebellar hypoplasia. Pediatr Radiol 28:547–551PubMedGoogle Scholar
  155. Ullman M (1997) A neural dissociation within language: evidence that mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. J Cogn Neurosci 9:266–276PubMedGoogle Scholar
  156. Van Bon BW, Koolen DA, Borgatti R et al (2008) Clinical and molecular characteristics of 1qter microdeletion syndrome: delineating a critical region for corpus callosum agenesis/hypogenesis. J Med Genet 45:346–254PubMedGoogle Scholar
  157. Van Coster RN, De Praeter CM, Vanhaesebrouck PJ et al (1998) MRI finding in a neonate with cerebellar agenesis. Pediatr Neurol 19:139142Google Scholar
  158. Van Hoof SC, Wilmink JT (1996) Cerebellar agenesis. J Belg Radiol 79:282PubMedGoogle Scholar
  159. Velioglu SK, Kuzelyli K, Zzmenoglu M (1998) Cerebellar agenesis: a case report with clinical MR imaging finding and a review of the literature. Eur J Neurol 5:503–506PubMedGoogle Scholar
  160. Verdelli A (1874) Citation in Stewart RM (1956) Cerebellar agenesis. J Ment Sci 102:67–77Google Scholar
  161. Wang SSH, Kloth AD, Badura A (2014) The cerebellum, sensitive periods, and autism. Neuron 83:518–532PubMedPubMedCentralGoogle Scholar
  162. Yu F, Jiang QJ, Sun XY, Zhang RW (2015) A new case of complete primary cerebellar agenesis: clinical and imaging findings in a living patient. Brain 138(Pt 6):e353PubMedGoogle Scholar
  163. Zaferiou DI, Vargiami E, Bolthsauser E (2004) Cerebellar agenesis and diabetes insipidus. Neuropediatrics 35:364–367Google Scholar
  164. Zanni G, Saillour Y, Nagara M et al (2005) Oligophrenin 1 mutations frequently cause X-linked mental retardation with cerebellar hypoplasia. Neurology 65:1364–1369PubMedGoogle Scholar
  165. Zettin M, Cappa SF, D’Amico A et al (1997) Agrammatic speech production after a right cerebellar haemorrhage. Neurocase 3:375–380Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Child Neuropsychiatry and Neurorehabilitation“E. Medea” Scientific InstituteBosisio Parini (LC)Italy
  2. 2.Child Neurology and Psychiatry UnitIRCCS Mondino FoundationPaviaItaly
  3. 3.Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly

Section editors and affiliations

  • Jeremy D. Schmahmann
    • 1
  • Mario U. Manto
    • 2
  1. 1.Department of Neurology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.CHU-CharleroiUniversity of Mons, UMonsCharleroiBelgium

Personalised recommendations