Advertisement

Lurcher Mouse

  • Jan CendelinEmail author
  • Frantisek Vozeh
Living reference work entry

Abstract

Lurcher mutant mice represent one of the frequently used mouse models of the olivocerebellar degeneration. It is caused by a mutation in the δ2 glutamate receptor subunit encoding gene. The gain-of-function mutation changes the receptor into a leaky membrane channel leading to chronic depolarization of the cells expressing the receptor. Heterozygous Lurcher mice suffer from virtually complete postnatal loss of cerebellar Purkinje cells and reduction of granule, stellate, and basket cells and inferior olive neurons and relatively mild changes in the deep cerebellar nuclei. The death of Purkinje cells is a primary effect of the mutation, and it shows features of apoptosis, autophagy, and necrosis. Extinction of the granule, stellate, and basket cells and inferior olive neurons is a target-related cell death. Lurcher mice display neurochemical and metabolic changes, abnormalities in the neurotransmitter and receptor systems, endocrine and immune abnormalities, and multiple behavioral deficits.

Keywords

Amino acid neurotransmitters Anxiety Apoptosis Ataxia Autophagy Basket cells Bax Caspase-3 Cerebellar degeneration Classical conditioning Cytochrome oxidase Purkinje cells Cerebellar nuclei Dopamine Endothelin-1 receptor Excitotoxic Exploration behavior Eyelid response GABA Gait Glutamate Glutamate receptor Grooming GluRδ2 Granule cells Inferior olive Lurcher Motor learning Motor skills Necrosis Neurotrophin Noradrenaline Oculomotor system Olivocerebellar degeneration p53 Prepulse inhibition Serotonin Spatial learning Spatial orientation Stellate cells Working memory 

References

  1. Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197:1267–1276PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bakalian A, Kopmels B, Messer A, Fradelizi D, Delhaye-Bouchaud N, Wollman E, Mariani J (1992) Peripheral macrophage abnormalities in mutant mice with spinocerebellar degeneration. Res Immunol 143:129–139PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bäurle J, Kranda K, Frischmuth S (2006) On the variety of cell death pathways in the Lurcher mutant mouse. Acta Neuropathol 112:691–702PubMedCrossRefPubMedCentralGoogle Scholar
  4. Belzung C, Chapillon P, Lalonde R (2001) The effects of the Lurcher mutation on object localization, T-maze discrimination, and radial arm maze tasks. Behav Genet 31:151–155PubMedCrossRefPubMedCentralGoogle Scholar
  5. Beranova M, Mandakova P, Sima P, Slipka J, Vozeh F, Kocova J, Cervinkova M, Sykora J (2002) The morphology of the adrenal gland and the lymph organs is impaired in the neurodeficient Lurcher mutant mice. Acta Vet Brno 71:23–28CrossRefGoogle Scholar
  6. Caddy KWT, Biscoe TJ (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond Ser B Biol Sci 287:167–201Google Scholar
  7. Caddy KWT, Vozeh F (1997) The effect of 3-acetylpyridine on olivary neuron degeneration in Lurcher mutant and wild type mice. Eur J Pharmacol 330:139–142PubMedCrossRefPubMedCentralGoogle Scholar
  8. Caston J, Vasseur F, Stelz T, Chianale C, Delhaye-Bouchaud N, Mariani J (1995) Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of the equilibrium behavior: studies in intact and cerebellectomized Lurcher mutant mice. Dev Brain Res 86:311–316CrossRefGoogle Scholar
  9. Caston J, Chianale C, Delhaye-Bouchaud N, Mariani J (1998) Role of the cerebellum in exploration behavior. Brain Res 808:232–237PubMedCrossRefPubMedCentralGoogle Scholar
  10. Caston J, Devulder B, Jouen F, Lalonde R, Delhaye-Bouchaud N, Mariani J (1999) Role of an enriched environment on the restoration of behavioral deficits in Lurcher mutant mice. Dev Psychobiol 35:291–303PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cendelin J, Korelusova I, Vozeh F (2008) The effect of repeated rotarod training on motor skills and spatial learning ability in Lurcher mutant mice. Behav Brain Res 189:65–74PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cendelin J, Korelusova I, Vozeh F (2009a) A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat Rec 292:1986–1992CrossRefGoogle Scholar
  13. Cendelin J, Korelusova I, Vozeh F (2009b) The effect of cerebellar transplantation and enforced physical activity on motor skills and spatial learning in adult Lurcher mutant mice. Cerebellum 8:35–45PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cendelin J, Voller J, Vozeh F (2010) Ataxic gait analysis in a mouse model of the olivocerebellar degeneration. Behav Brain Res 210:8–15PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cendelin J, Tuma J, Korelusova I, Vozeh F (2014) The effect of genetic background on behavioral manifestation of Grid2(Lc) mutation. Behav Brain Res 271:218–227PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chang B, Hawes NL, Hurd RE, Davisson T, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vis Res 42:517–525PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cheng SS, Heintz N (1997) Massive loss of mid- and hindbrain neurons during embryonic development of homozygous Lurcher mice. J Neurosci 17:2400–2407PubMedPubMedCentralCrossRefGoogle Scholar
  18. De Jager PL, Zuo J, Cook SA, Heintz N (1997) A new allele of the Lurcher gene, LurcherJ. Mamm Genome 8:647–650PubMedCrossRefPubMedCentralGoogle Scholar
  19. Doughty ML, De Jager PL, Korsmeyer SJ, Heintz N (2000) Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J Neurosci 20:3687–3694PubMedPubMedCentralCrossRefGoogle Scholar
  20. Duffin CA, McFarland R, Sarna JR, Vogel MW, Armstrong CL (2010) Heat shock protein 25 expression and preferential Purkinje cell survival in the Lurcher mutant mouse cerebellum. J Comp Neurol 518:1892–1907PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dumesnil-Bousez N, Sotelo C (1992) Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis. J Neurocytol 21:506–529PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dumesnil-Bousez N, Sotelo C (1993) Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience 55:1–21PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dusart I, Guenet JL, Sotelo C (2006) Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum 5:163–173PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fisher M (1984) Neuronal influence on glial enzyme expression: evidence from mutant mouse cerebella. Proc Natl Acad Sci U S A 81:4414–4418PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fortier P, Smith AM, Rossignol S (1987) Locomotor deficits in the cerebellar mutant mouse, Lurcher. Exp Brain Res 66:271–286PubMedCrossRefPubMedCentralGoogle Scholar
  26. Frederic F, Chautard T, Brochard R, Chianale C, Wollman E, Oliver C, Delhaye-Bouchaud N, Mariani J (1997) Enhanced endocrine response to novel environment stress and endotoxin in Lurcher mutant mice. Neuroendocrinology 66:341–347PubMedCrossRefPubMedCentralGoogle Scholar
  27. Frischmuth S, Kranda K, Bäurle J (2006) Translocation of cytochrome c during cerebellar degeneration in Lurcher and weaver mutant mice. Brain Res Bull 71:139–148PubMedCrossRefPubMedCentralGoogle Scholar
  28. Garin N, Hornung JP, Escher G (2002) Distribution of postsynaptic GABA(A) receptor aggregates in the deep cerebellar nuclei of normal and mutant mice. J Comp Neurol 447:210–217PubMedCrossRefPubMedCentralGoogle Scholar
  29. Heckroth JA (1994a) A quantitative morphological analysis of the cerebellar nuclei in normal and Lurcher mutant mice. I. Morphology and cell number. J Comp Neurol 343:173–182PubMedCrossRefPubMedCentralGoogle Scholar
  30. Heckroth JA (1994b) A quantitative morphological analysis of the cerebellar nuclei in normal and Lurcher mutant mice. II. Volumetric changes in cytological components. J Comp Neurol 343:182–192Google Scholar
  31. Heckroth JA, Hobart NJH, Summers D (1998) Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol 154:336–352PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hilber P, Caston J (2001) Motor skills and motor learning in Lurcher mutant mice during aging. Neuroscience 102:615–623PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hilber P, Jouen F, Delhaye-Bouchaud N, Mariani J, Caston J (1998) Differential roles of cerebellar cortex and deep cerebellar nuclei in learning and retention of a spatial task: studies in intact and cerebellectomized Lurcher mutant mice. Behav Genet 28:299–308PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hilber P, Lalonde R, Caston J (1999) An unsteady platform test for measuring static equilibrium in mice. J Neurosci Methods 88:201–205PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hilber P, Lorivel T, Delarue C, Caston J (2004) Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res 1003:108–112PubMedCrossRefPubMedCentralGoogle Scholar
  36. Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S (2010) Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 40:415–423PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kohda K, Wang Y, Yuzaki M (2000) Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat Neurosci 3:315–322PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kopmels B, Wollman EE, Guastavino JM, Delhaye-Bouchaud N, Fradelizi D, Mariani J (1990) Interleukin-1 hyperproduction by in vitro activated peripheral macrophages from cerebellar mutant mice. J Neurochem 55:1980–1985PubMedCrossRefPubMedCentralGoogle Scholar
  39. Krizkova A, Vozeh F (2004) Development of early motor learning and topical motor skills in a model of cerebellar degeneration. Behav Brain Res 150:65–72PubMedCrossRefPubMedCentralGoogle Scholar
  40. Lalonde R (1994) Motor learning in Lurcher mutant mice. Brain Res 639:351–353PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lalonde R (1998) Immobility responses in Lurcher mutant mice. Behav Genet 28:309–314PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lalonde R, Strazielle C (2007) Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res 1140:51–74PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lalonde R, Thifault S (1994) Absence of an association between motor coordination and spatial orientation in Lurcher mutant mice. Behav Genet 24:497–501PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lalonde R, Lamarre Y, Smith AM, Botez MI (1986) Spontaneous alternation and habituation in Lurcher mutant mice. Brain Res 362:161–164PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lalonde R, Lamarre Y, Smith AM (1988) Does the mutant mouse Lurcher have deficits in spatially oriented behaviours? Brain Res 455:24–30PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lalonde R, Botez MI, Joyal CC, Caumartin M (1992) Motor abnormalities in Lurcher mutant mice. Physiol Behav 51:523–525PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lalonde R, Joyal CC, Guastavino JM, Botez MI (1993) Hole poking and motor coordination in Lurcher mutant mice. Physiol Behav 54:41–44PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lalonde R, Filali M, Bensoula AN, Lestienne F (1996a) Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem 65:113–120PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lalonde R, Filali M, Bensoula AN, Monnier C, Guastavino JM (1996b) Spatial learning in a Z-maze by cerebellar mutant mice. Physiol Behav 59:83–86PubMedCrossRefPubMedCentralGoogle Scholar
  50. Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen O (1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 15:834–842CrossRefGoogle Scholar
  51. Le Marec N, Lalonde R (2000) Treadmill performance of mice with cerebellar lesions: 2. Lurcher mutant mice. Neurobiol Learn Mem 73:195–206PubMedCrossRefPubMedCentralGoogle Scholar
  52. Le Marec N, Caston J, Lalonde R (1997) Impaired motor skills on static and mobile beams in Lurcher mutant mice. Exp Brain Res 116:131–138PubMedCrossRefPubMedCentralGoogle Scholar
  53. Le Marec N, Hébert C, Botez MI, Botez-Marquard T, Marchand L, Reader TA (1999) Serotonin innervation of Lurcher mutant mice: basic data and manipulation with a combination of amantadine, thiamine and L-tryptophan. Brain Res Bull 48:195–201PubMedCrossRefPubMedCentralGoogle Scholar
  54. Le Marec N, Asea AR, Botez-Marquard T, Marchand L, Reader TA, Lalonde R (2001) Behavioral and biochemical effects of L-tryptophan and buspirone in a model of cerebellar atrophy. Pharmacol Biochem Behav 69:333–342PubMedCrossRefPubMedCentralGoogle Scholar
  55. Linnemann C, Sultan F, Pedroarena CM, Schwarz C, Thier P (2004) Lurcher mice exhibit potentiation of GABA(A)-receptor-mediated conductance in cerebellar nuclei neurons in close temporal relationship to Purkinje cell death. J Neurophysiol 91:1102–1107PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lorivel T, Hilber P (2007) Motor effects of delta 9 THC in cerebellar Lurcher mutant mice. Behav Brain Res 181:248–253PubMedCrossRefPubMedCentralGoogle Scholar
  57. Lorivel T, Gras M, Hilber P (2010) Effects of corticosterone synthesis inhibitor metyrapone on anxiety-related behaviors in Lurcher mutant mice. Physiol Behav 101:309–314PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lorivel T, Roy V, Hilber P (2014) Fear-related behaviors in Lurcher mutant mice exposed to a predator. Genes Brain Behav 13:794–801PubMedCrossRefPubMedCentralGoogle Scholar
  59. Mandakova P, Sinkora J, Sima P (2005) Reduced primary T lymphopoiesis in 3-month-old Lurcher mice: sign of premature ageing of thymus? Neuroimmunomodulation 12:348–356PubMedCrossRefPubMedCentralGoogle Scholar
  60. Markvartova V, Cendelin J, Vozeh F (2010) Changes of motor abilities during ontogenetic development in Lurcher mutant mice. Neuroscience 168:646–651PubMedCrossRefPubMedCentralGoogle Scholar
  61. Martin LA, Escher T, Goldowitz D, Mittleman G (2004) A relationship between cerebellar Purkinje cells and spatial working memory demonstrated in a Lurcher/chimera mouse model system. Genes Brain Behav 3:158–166PubMedCrossRefPubMedCentralGoogle Scholar
  62. Monnier C, Lalonde R (1995) Elevated (+)-maze and hole-board exploration in Lurcher mutant mice. Brain Res 702:169–172PubMedCrossRefPubMedCentralGoogle Scholar
  63. Myslivecek J, Cendelin J, Korelusova I, Kunova M, Markvartova V, Vozeh F (2007) Changes of dopamine receptors in mice with olivocerebellar degeneration. Prague Med Rep 108:57–66PubMedPubMedCentralGoogle Scholar
  64. Nishiyama J, Yuzaki M (2010) Excitotoxicity and autophagy: Lurcher may not be a model of “autophagic cell death”. Autophagy 6:568–570PubMedCrossRefPubMedCentralGoogle Scholar
  65. Nishiyama J, Matsuda K, Kakegawa W, Yamada N, Motohashi J, Mizushima N, Yuzaki M (2010) Reevaluation of neurodegeneration in Lurcher mice: constitutive ion fluxes cause cell death with, not by, autophagy. J Neurosci 30:2177–2218PubMedPubMedCentralCrossRefGoogle Scholar
  66. Norman DJ, Feng L, Cheng SS, Gubbay J, Chan E, Heintz N (1995) The Lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development 121:1183–1193PubMedPubMedCentralGoogle Scholar
  67. Phillips RJS (1960) “Lurcher”, new gene in linkage group XI of the house mouse. J Genet 57:35–42CrossRefGoogle Scholar
  68. Porras-Garcia E, Cendelin J, Dominguez-del-Toro E, Vozeh F, Delgado-Garcia JM (2005) Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur J Neurosci 21:979–988PubMedCrossRefPubMedCentralGoogle Scholar
  69. Porras-Garcia E, Sanchez-Campusano R, Martinez-Vargas D, Dominguez-del-Toro E, Cendelin J, Vozeh F, Delgado-Garcia JM (2010) Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J Neurophysiol 104:346–365PubMedCrossRefPubMedCentralGoogle Scholar
  70. Purkartova Z, Vozeh F (2013) Cerebellar degeneration in Lurcher mice under confocal laser scanning microscope. Microsc Res Tech 76:545–551PubMedCrossRefPubMedCentralGoogle Scholar
  71. Reader TA, Strazielle C, Botez MI, Lalonde R (1998) Brain dopamine and amino acid concentrations in Lurcher mutant mice. Brain Res Bull 45:489–493PubMedCrossRefPubMedCentralGoogle Scholar
  72. Reader TA, Ase AR, Le Marec N, Lalonde R (2000) Differential effects of L-tryptophan and buspirone on biogenic amine contents and metabolism in Lurcher mice cerebellum. Neurosci Lett 280:171–174PubMedCrossRefPubMedCentralGoogle Scholar
  73. Selimi F, Doughty M, Delhaye-Bouchaud N, Mariani J (2000a) Target-related and intrinsic neuronal death in Lurcher mutant mice are both mediated by caspase-3 activation. J Neurosci 20:992–1000PubMedPubMedCentralCrossRefGoogle Scholar
  74. Selimi F, Vogel MW, Mariani J (2000b) Bax inactivation in Lurcher mutants rescues cerebellar granule cells but not Purkinje cells or inferior olivary neurons. J Neurosci 20:5339–5345PubMedPubMedCentralCrossRefGoogle Scholar
  75. Stenglova V, Cendelin J, Vozeh F (2004) Pohled do nitra mozecku. Vesmir 83:273–275Google Scholar
  76. Strazielle C, Lalonde R (1998) Grooming in Lurcher mutant mice. Physiol Behav 64:57–61PubMedCrossRefPubMedCentralGoogle Scholar
  77. Strazielle C, Lalonde R, Riopel L, Botez MI, Reader TA (1996) Regional distribution of the 5-HT innervation in the brain of normal and Lurcher mice as revealed by [3H]citalopram autoradiography. J Chem Neuroanat 10:157–171PubMedCrossRefPubMedCentralGoogle Scholar
  78. Strazielle C, Krémarik P, Ghersi-Egea JF, Lalonde R (1998a) Regional brain variations of cytochrome oxidase activity and motor coordination in Lurcher mutant mice. Exp Brain Res 121:35–45PubMedCrossRefPubMedCentralGoogle Scholar
  79. Strazielle C, Lalonde R, Amdiss F, Botez MI, Hébert C, Reader TA (1998b) Distribution of dopamine transporters in basal ganglia of cerebellar ataxic mice by [125I]RTI-121 quantitative autoradiography. Neurochem Int 32:61–68PubMedCrossRefPubMedCentralGoogle Scholar
  80. Strazielle C, Lalonde R, Reader TA (2000) Autoradiography of glutamate receptor binding in adult Lurcher mutant mice. J Neuropathol Exp Neurol 59:707–722PubMedCrossRefPubMedCentralGoogle Scholar
  81. Sultan F, König T, Möck M, Thier P (2002) Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol 452:311–323PubMedCrossRefPubMedCentralGoogle Scholar
  82. Swisher DA, Wilson DB (1977) Cerebellar histogenesis in the Lurcher (Lc) mutant mouse. J Comp Neurol 173:205–218PubMedCrossRefPubMedCentralGoogle Scholar
  83. Thullier F, Lalonde R, Cousin X, Lestienne F (1997) Neurobehavioral evaluation of Lurcher mutant mice during ontogeny. Dev Brain Res 100:22–28CrossRefGoogle Scholar
  84. Thullier F, Lalonde R, Lestienne F (1999) Effects of dopaminergic agents and of an NMDA receptor antagonist on motor coordination in Lurcher mutant mice. Pharmacol Biochem Behav 63:213–219PubMedCrossRefPubMedCentralGoogle Scholar
  85. Tomey DA, Heckroth JA (1993) Transplantation of normal embryonic cerebellar cell suspensions into the cerebellum of Lurcher mutant mice. Exp Neurol 122:165–170PubMedCrossRefPubMedCentralGoogle Scholar
  86. Triarhou LC (1996) The cerebellar model of neural grafting: structural integration and functional recovery. Brain Res Bull 39:127–138PubMedCrossRefPubMedCentralGoogle Scholar
  87. Van Alphen AM, Schepers T, Luo C, De Zeeuw CI (2002) Motor performance and motor learning in Lurcher mice. Ann N Y Acad Sci 978:413–424PubMedCrossRefPubMedCentralGoogle Scholar
  88. Vernet-der Garabedian B, Lemaigre-Dubreuil Y, Delhaye-Bouchaud N, Mariani J (1998) Abnormal IL-1b cytokine expression in the cerebellum of the ataxic mutant mice staggerer and Lurcher. Mol Brain Res 62:224–227PubMedCrossRefPubMedCentralGoogle Scholar
  89. Vig PJ, Desaiah D, Subramony SH, Fratkin JD (1995) Developmental changes in cerebellar endothelin-1 receptors in the neurologic mouse Lurcher mutant. Res Commun Mol Pathol Pharmacol 89:307–316PubMedPubMedCentralGoogle Scholar
  90. Vogel MW, McInnes M, Zanjani HS, Herrup K (1991) Cerebellar Purkinje cells provide target support over a limited spatial range: evidence from Lurcher chimeric mice. Brain Res Dev Brain Res 64:87–94PubMedCrossRefPubMedCentralGoogle Scholar
  91. Vogel MW, Fan H, Sydnor J, Guidetti P (2001) Cytochrome oxidase activity is increased in +/Lc Purkinje cells destined to die. Neuroreport 12:3039–3043PubMedCrossRefPubMedCentralGoogle Scholar
  92. Vogel MW, Caston J, Yuzaki M, Mariani J (2007) The Lurcher mouse: fresh insights from an old mutant. Brain Res 1140:4–18PubMedCrossRefPubMedCentralGoogle Scholar
  93. Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz MP, Yue Z (2006) Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 26:8057–8068PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wetts R, Herrup K (1982a) Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice. I. Qualitative studies. J Embryol Exp Morphol 68:87–98PubMedPubMedCentralGoogle Scholar
  95. Wetts R, Herrup K (1982b) Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice. II. Granule cell death. Brain Res 250:358–362PubMedCrossRefPubMedCentralGoogle Scholar
  96. Wüllner U, Löschmann PA, Weller M, Klockgether T (1995) Apoptotic cell death in the cerebellum of mutant weaver and Lurcher mice. Neurosci Lett 200:109–112PubMedCrossRefPubMedCentralGoogle Scholar
  97. Wüllner U, Isenmann S, Gleichmann M, Klockgether T, Bähr M (1998) Expression of neurotrophins and neurotrophin receptors in the cerebellum of mutant weaver and Lurcher mice. Dev Brain Res 110:1–6CrossRefGoogle Scholar
  98. Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N (2002) A novel protein complex linking the δ2 glutamate receptor and autophagy: implications for neurodegeneration in Lurcher mice. Neuron 35:921–933PubMedCrossRefPubMedCentralGoogle Scholar
  99. Zanjani HS, Vogel MW, Martinou JC, Delhaye-Bouchaud N, Mariani J (1998) Postnatal expression of Hu-Bcl-2 gene in Lurcher mutant mice fails to rescue Purkinje cells but protects inferior olivary neurons from target-related cell death. J Neurosci 18:319–327PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zanjani SH, Selimi F, Vogel MW, Haeberle AM, Boeuf J, Mariani J, Bailly YJ (2006) Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/−;Bax−/−. J Comp Neurol 497:622–635PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zanjani HS, McFarland R, Cavelier P, Blokhin A, Gautheron V, Levenes C, Bambrick LL, Mariani J, Vogel MW (2009) Death and survival of heterozygous Lurcher Purkinje cells in vitro. Dev Neurobiol 69:505–517PubMedPubMedCentralCrossRefGoogle Scholar
  102. Zuo J, De Jager PL, Takahasi KJ, Jiang W, Linden DJ, Heintz H (1997) Neurodegeneration in Lurcher mice caused by mutation of δ2 glutamate receptor gene. Nature 388:769–773PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pathophysiology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
  2. 2.Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic

Section editors and affiliations

  • Noriyuki Koibuchi
    • 1
  1. 1.Department of Integrative PhysiologyGunma University Graduate School of MedicineMaebashiJapan

Personalised recommendations