Advertisement

Taurine in the Cerebellum Contact Information

  • Abdeslem El IdrissiEmail author
  • Francoise Sidime
  • Salvatore Rotondo
  • Zaghloul Ahmed
Living reference work entry

Abstract

Taurine (2-aminoethanesulfonic acid) is a sulfur-containing amino acid. It is one of the most abundant free amino acids in many excitable tissues, including the brain and skeletal and cardiac muscles. Physiological actions of taurine are widespread and include regulation of plasma glucose levels, bile acid conjugation, detoxification, membrane stabilization, blood pressure regulation, osmoregulation, neurotransmission, and modulation of mitochondria function and cellular calcium levels. Taurine plays an important role in modulating glutamate and GABA neurotransmission and prevents excitotoxicity in vitro primarily through modulation of intracellular calcium homeostasis. Taurine supplementation prevents age-dependent decline of cognitive functions. Because of the widespread actions of taurine, its levels are highly regulated through enzymatic biosynthesis or dietary intake. Furthermore, depletion of endogenous or dietary supplementation of exogenous taurine has been shown to induce widespread actions on multiple organs. Cysteine sulfonic acid decarboxylase (CSAD) was first identified in the liver and is thought to be the rate-limiting enzyme in taurine biosynthesis. CSAD mRNA is expressed in the brain in astrocytes. Homozygous knockout mice lacking CSAD (CSAD-KO) have very reduced taurine content and show severe functional histopathology in the visual system, skeletal system, heart, pancreas, and brain. Conversely, dietary supplementation of taurine results in significant health benefits acting through the same organ systems. Fluctuation of taurine bioavailability leads to changes in the expression levels of taurine transporters in neuronal plasma membranes, endothelial cells forming the blood-brain barrier, and proximal cells of the kidneys. This suggests a highly regulated mechanism for maintaining taurine homeostasis and organ systems function. This chapter discusses examples of how alterations in taurine levels directly affect the function of one organ system and through functional interaction and compensatory adaptation; these effects extend to another organ systems with focus on cerebellar function.

Keywords

Taurine Insulin Insulin receptors GABA Cystein sulfonic acid decarboxylase (CSAD) CSAD-KO Cerebellar granule cells Glutamic acid decarboxylase Cysteamine Somatostatin Paired-pulse facilitation Prepulse inhibition Glucose tolerance Electromyogram Stretch reflex 

References

  1. Ábrahám H, Richter Z, Gyimesi C, Horváth Z, Janszky J, Dóczi T, Seress L (2011) Degree and pattern of calbindin immunoreactivity in granule cells of the dentate gyrus differ in mesial temporal sclerosis, cortical malformation- and tumor-related epilepsies. Brain Res 1399:66–78PubMedCrossRefGoogle Scholar
  2. Agrawal H, Davison A, Kaczmarek L (1971) Subcellular distribution of taurine and cysteinesulphinate decarboxylase in developing rat brain. Biochem J 122(5):759–763PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmad M, Khan A, Mahmood R (2013) Taurine ameliorates potassium bromate-induced kidney damage in rats. Amino Acids 45(5):1109–1121PubMedCrossRefGoogle Scholar
  4. Arany E, Strutt B, Romanus P, Remacle C, Reusens B, Hill DJ (2004) Taurine supplement in early life altered islet morphology, decreased insulitis and de-layed the onset of diabetes in non-obese diabetic mice. Diabetologia 47:1831–1837PubMedCrossRefGoogle Scholar
  5. Banks WA, Jaspan JB, Huang W, Kastin AJ (1997) Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 18(9):1423–1429PubMedCrossRefGoogle Scholar
  6. Benuck M, Banay-Schwartz M, Deguzman T, Lajtha A (1995) Effect of food deprivation on glutathione and amino acid levels in brain and liver of young and aged rats. Brain Res 678(1):259–264PubMedCrossRefGoogle Scholar
  7. Bonfleur B, Ribeiro C, Soares GM, Carneiro EM, Balbo SL (2015) Improvement in the expression of hepatic genes involved in fatty acid metabolism in obese rats supplemented with taurine. Life Sci 135(C):15–21PubMedCrossRefGoogle Scholar
  8. Carneiro EM, Latorraca MQ, Araujo E, Beltrá M, Oliveras MJ, Navarro M, Martín F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20(7):503–511PubMedCrossRefGoogle Scholar
  9. Dalmau J, Geis C, Graus F (2017) Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev 97(2):839–887PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dugan LL, Choi DW (1999) Free radicals in hypoxia-ischemia. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, PhiladelphiaGoogle Scholar
  11. El Idrissi A (2008) Taurine improves learning and retention in aged mice. Neurosci Lett 436(1):19–22PubMedCrossRefGoogle Scholar
  12. El Idrissi A (2011) Functional consequences of taurine interaction with the GABAergic system. Amino Acids 41:S83–S83Google Scholar
  13. El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468PubMedCrossRefGoogle Scholar
  14. El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197PubMedCrossRefGoogle Scholar
  15. El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of epileptic seizures through taurine. In: Lombardini JB, Schaffer SW, Azuma J (eds) Taurine 5 beginning the 21st century, Advances in experimental medicine and biology, vol 526. Kluwer Press, New York, pp 515–525Google Scholar
  16. El Idrissi A, Yan X, Sidime F, L’Amoreaux WJ (2010) Neuro-endocrine basis for altered plasma glucose homeostasis in the fragile X mouse. J Biomed Sci 17(Suppl 1):S8–S8PubMedPubMedCentralCrossRefGoogle Scholar
  17. El Idrissi A, Shen CH, L’Amoreaux WJ (2013) Neuroprotective role of taurine during aging. Amino Acids 45(4):735–750.  https://doi.org/10.1007/s00726-013-1544-7. 23963537PubMedCrossRefGoogle Scholar
  18. El Idrissi A, El Hilali F, Rotondo S, Sidime F (2017) Effects of taurine supplementation on neuronal excitability and glucose homeostasis. Adv Exp Med Biol 975:271–279.  https://doi.org/10.1007/978-94-024-1079-2_24. 28849462PubMedCrossRefGoogle Scholar
  19. Eom H, Park J (2017) Inhibitory effect of taurine on biofilm formation during alkane degradation in Acinetobacter oleivorans DR1. Microb Ecol 74(4):821–831PubMedCrossRefGoogle Scholar
  20. Erlander MG, Tillakaratne NJK, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100PubMedCrossRefGoogle Scholar
  21. Hayashi M, Yamashita A, Shimizu K (1997) Somatostatin and brain-derived neurotrophic factor mRNA expression in the primate brain: decreased levels of mRNAs during aging. Brain Res 749(2):283–289PubMedCrossRefGoogle Scholar
  22. Huxtable RJ (1989) Taurine in the central nervous system and the mammalian action actions of taurine. Prog Neurobiol 32:471–533PubMedCrossRefGoogle Scholar
  23. Ishibashi H, Akaike N (1995) Somatostatin modulates high-voltageactivated ca channels in freshly dissociated rat hippocampal neurons. J Neurophysiol 74:1028–1036PubMedCrossRefGoogle Scholar
  24. Khodorov B, Storozhevykh I, Surin T, Yuryavichyus P, Sorokina A, Borodin M, Pinelis V (2002) The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disruptions in Ca2+ homeostasis. Neurosci Behav Physiol 32(5):541–547PubMedCrossRefGoogle Scholar
  25. Kuriyama K, Hashimoto T (1998) Interrelationship between taurine and GABA. Adv Exp Med Biol 442:329–337PubMedCrossRefGoogle Scholar
  26. Lau D, Bengtson CP, Buchthal B, Bading H (2015) BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/Activin A. Cell Rep 12(8):1353–1366PubMedCrossRefGoogle Scholar
  27. Liu Y, Tonna-DeMasi M, Park E, Schuller-Levis G, Quinn MR (1998) Taurine chloramine inhibits production of nitric oxide and prostaglandin E2 in activated C6 glioma cells by suppressing inducible nitric oxide synthase and cyclooxygenase-2 expression. Brain Res Mol Brain Res 59:189–195PubMedCrossRefGoogle Scholar
  28. Lötsch J, Hummel T, Warskulat U, Coste O, Häussinger D, Geisslinger G, Tegeder I (2014) Congenital taurine deficiency in mice is associated with reduced sensitivity to nociceptive chemical stimulation. Neuroscience 259(C):63–70PubMedCrossRefGoogle Scholar
  29. Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder.(Report). Mol Psychiatry 16(4):383–406PubMedCrossRefGoogle Scholar
  30. Magnusson K, Madl J, Clements J, Wu J, Larson A, Beitz A (1988) Colocalization of taurine- and cysteine sulfinic acid decarboxylase-like immunoreactivity in the cerebellum of the rat with monoclonal antibodies against taurine. J Neurosci Off J Soc Neurosci 8(12):4551–4564CrossRefGoogle Scholar
  31. Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA (2009) Awake intrana-Sal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci 29:6734–6751PubMedPubMedCentralCrossRefGoogle Scholar
  32. Martin D, Madelian V, Seligmann B, Shain W (1990) The role of osmotic pressure and membrane potential in K+-stimulated taurine release from cultured astrocytes and LRM55 cells. J Neurosci Off J Soc Neurosci 10(2):571–577CrossRefGoogle Scholar
  33. Mellor JR, Gunthorpe MJ, Randall AD (2000) The taurine uptake inhibitor guanidinoethyl sulphonate is an agonist at γ-aminobutyric acid a receptors in cultured murine cerebellar granule cells. Neurosci Lett 286(1):25–28PubMedCrossRefGoogle Scholar
  34. Mielke JG, Taghibiglou C, Wang YT (2006) Endogenous insulin signaling protects cultured neurons from oxygen–glucose deprivation-induced cell death. Neuroscience 143:165–173PubMedCrossRefGoogle Scholar
  35. Miranda-Contreras L, Benítez-Diaz PR, Mendoza-Briceño RV, Delgado-Saez MC, Palacios-Prü EL (1999) Levels of amino acid neurotransmitters during mouse cerebellar neurogenesis and in histotypic cerebellar cultures. Dev Neurosci 21:147–158PubMedCrossRefGoogle Scholar
  36. Moghbelinejad S, Rashvand Z, Khodabandehloo F, Mohammadi G, Nassiri-Asl M (2016) Modulation of the expression of the GABAA receptor β1 and β3 subunits by pretreatment with quercetin in the KA model of epilepsy in mice: -the effect of quercetin on GABAA receptor Beta subunits. J Pharm 19(2):163–166Google Scholar
  37. Moore SD, Madamba SG, Joels M, Siggins GR (1988) Somatostatin augments the M-current in hippocampal neurons. Science 239:278–280PubMedCrossRefGoogle Scholar
  38. Nguyen T, Bhattarai J, Park S, Han S (2013) Activation of Glycine and Extrasynaptic GABA receptors by taurine on the substantia Gelatinosa neurons of the trigeminal subnucleus Caudalis. Neural Plast 2013(4):740581PubMedPubMedCentralGoogle Scholar
  39. Petrik J, Arany E, McDonald TJ, Hill DJ (1998) Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology 139:2994–3004PubMedCrossRefGoogle Scholar
  40. Pitari G, Malergue F, Martin F, Philippe JP, Massucci MT, Maras CB, Duprè S, Naquet P, Galland F (2000) Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice. FEBS Lett 483:149–154PubMedCrossRefGoogle Scholar
  41. Plum L, Schubert M, Brüning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16:59–65PubMedCrossRefGoogle Scholar
  42. Prentki M, Janjic D, Wollheim C (1983) The regulation of extramitochondrial steady state free Ca2 concentration by rat insulinoma mitochondria. J Biol Chem 258(12):7597–7602PubMedGoogle Scholar
  43. Riback CE, Lauterborn JC, Navetta MS, Gall CM (1993) The inferior colliculus of GEPRs contains greater numbers of cells that express glutamate decarboxylase (GAD67) mRNA. Epilepsy Res 14:105–113CrossRefGoogle Scholar
  44. Rose J, Brian C, Woods J, Pappa A, Panayiotidis MI, Powers R, Franco R (2017) Mitochondrial dysfunction in glial cells: implications for neuronal homeostasis and survival. Toxicology 391:109–115PubMedPubMedCentralCrossRefGoogle Scholar
  45. Saransaari P, Oja S (2000) Modulation of the ischemia-induced taurine release by adenosine receptors in the developing and adult mouse hippocampus. Neuroscience 97(3):425–430PubMedCrossRefGoogle Scholar
  46. Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S (1997) Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 138(4):1736–1741PubMedCrossRefGoogle Scholar
  47. Shennan D (2008) Swelling-induced taurine transport: relationship with chloride channels, anion-exchangers and other swelling-activated transport pathways. Cell Physiol Biochem 21(1–3):015–028CrossRefGoogle Scholar
  48. Silbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, Vaccarino F (2010) Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Mol Cell Neurosci 44(4):362–373PubMedPubMedCentralCrossRefGoogle Scholar
  49. Sturman JA (1991) Dietary taurine and feline reproduction and development. J Nutr 121(11 Suppl):S166–S170PubMedCrossRefGoogle Scholar
  50. Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147PubMedCrossRefGoogle Scholar
  51. Sturman J, Lu A (1997) Role of feline maternal taurine nutrition in fetal cerebellar development: an immunohistochemical study. Amino Acids 13(3):369–377CrossRefGoogle Scholar
  52. Sun QQ, Huguenard JR, Prince DA (2002) Somatostatin inhibits thalamic network oscillations In vitro: actions on the GABAergic neurons of the reticular nucleus. J Neurosci 22:5374–5386PubMedCrossRefGoogle Scholar
  53. Ueki I, Roman H, Valli A, Fieselmann K, Lam J, Peters R, Stipanuk M (2011) Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301(4):E668–E684PubMedPubMedCentralCrossRefGoogle Scholar
  54. Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 36:343–362PubMedCrossRefGoogle Scholar
  55. Van Den Pol A, Gorcs T (1988) Glycine and glycine receptor immunoreactivity in brain and spinal cord. J Neurosci Off J Soc Neurosci 8(2):472–492CrossRefGoogle Scholar
  56. Vezzani A, Hoyer D (1999) Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis. Eur J Neurosci 11:3767–3776PubMedCrossRefGoogle Scholar
  57. Willoughby JO, Mackenzie L (1999) Picrotoxin-, kainic acid- and seizure-induced Fos in brainstem, with special reference to catecholamine cell groups. Neurosci Res 33:163–169PubMedCrossRefGoogle Scholar
  58. Winter C, Djodari-Irani A, Sohr R, Morgenstern R, Feldon J, Juckel G, Meyer U (2009) Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 12(4):513–524PubMedCrossRefGoogle Scholar
  59. Wu JY, Tang XW, Schloss JV, Faiman MD (1998) Regulation of taurine biosynthesis and its physiological significance in the brain. Adv Exp Med Biol 442:339–345PubMedCrossRefGoogle Scholar
  60. Zhang C, Kim S (2007) Taurine induces anti-anxiety by activating strychnine-sensitive Glycine receptor in vivo. Ann Nutr Metab 51(4):379–386PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abdeslem El Idrissi
    • 1
    • 2
    • 3
    Email author
  • Francoise Sidime
    • 1
    • 2
  • Salvatore Rotondo
    • 1
  • Zaghloul Ahmed
    • 2
    • 3
    • 4
  1. 1.Department of BiologyCollege of Staten IslandStaten IslandUSA
  2. 2.The Center for Developmental NeuroscienceCollege of Staten IslandStaten IslandUSA
  3. 3.The Graduate Center, Program in Biology – NeurosciencesThe City University of New YorkNew YorkUSA
  4. 4.Department of Physical Therapy/School of Health SciencesCollege of Staten IslandStaten IslandUSA

Section editors and affiliations

  • Donna L. Gruol
    • 1
  1. 1.Molecular and Integrative Neuroscience Department (MIND), The Scripps Research InstituteLa JollaUSA

Personalised recommendations