Biochemical Warfare Between Living Organisms for Survival: Mathematical Modeling

  • S. A. CarvalhoEmail author
  • M. L. Martins
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Nowadays, evidence is mounting that the race of living organisms for adaptation to the chemicals synthesized by their neighbors may drive competition, coexistence, and community structures. Particularly, some bacterial infections and plant invasions disruptive of the native community rely on the release of allelochemicals that inhibit or kill sensitive strains or individuals from their own or other species. In this chapter, we review single and multiscale mathematical models proposed to investigate the dynamics of the biochemical warfare between competing species for survival.


allelochemical suppression population dynamics multiscale modelling community assembly 


  1. 1.
    Cordero OX, Wildschutte H, Kirkup B, Proeh LS, Ngo L, Hussain F, Le Roux F, Mincer T, Polz MF (2012) Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337:1228–1231PubMedCrossRefGoogle Scholar
  2. 2.
    Starmer WT, Ganter PF, Aberdeen V, Lachance M-A, Phaff HJ (1987) The ecological role of killer yeasts in natural communities of yeasts. Can J Microbiol 33:783–796PubMedCrossRefGoogle Scholar
  3. 3.
    Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:126CrossRefGoogle Scholar
  4. 4.
    Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32PubMedCrossRefGoogle Scholar
  5. 5.
    Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acid-meditated tumour invasion: a multidisciplinary study. Cancer Res 66:5216–5223PubMedCrossRefGoogle Scholar
  6. 6.
    Braganhol E, Wink MR, Lenz G, Battastini AMO (2013) Purinergic signaling in glioma progression. In: Baranska J (ed) Glioma signaling, Advances in experimental medicine and biology, vol 986. Springer, DordrechtGoogle Scholar
  7. 7.
    Bais HP, Vepachedu R, Gilroy S et al (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380PubMedCrossRefGoogle Scholar
  8. 8.
    Chou C (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev Plant Sci 18:609–636CrossRefGoogle Scholar
  9. 9.
    Dean WRJ (1998) Space invaders: modeling the distribution, impacts and control of alien organisms. Trends Ecol Evol 13:256–258PubMedCrossRefGoogle Scholar
  10. 10.
    Drake JA, Mooney HA, di Castri F et al (eds) (1989) Biological invasions: a global perspective. Wiley, ChichesterGoogle Scholar
  11. 11.
    Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, OxfordGoogle Scholar
  12. 12.
    Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Richards MJ, Edwards JR, Culver DH, Gaynes RP (2000) Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol 21:510–515PubMedCrossRefGoogle Scholar
  14. 14.
    Martina Sassone-Corsi M, Nuccio S-P, Liu H, Hernandez D, Vu CT, Takahashi AA, Edwards RA, Raffatellu M (2016) Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540:280–283PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Petrovskii S, Shigesada N (2001) Some exact solutions of a generalized Fisher equation related to the problem of biological invasion. Math Biosci 172:73–94PubMedCrossRefGoogle Scholar
  16. 16.
    Sherratt JA, Lewis MA, Fowler AC (1995) Ecological chaos in the wake of invasion. Proc Natl Acad Sci U S A 92:2524–2528PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Shigesada N, Kawasaki K, Teramoto E (1986) Traveling periodic waves in heterogeneous environments. Theor Popul Biol 30:143–160CrossRefGoogle Scholar
  18. 18.
    Perotti JI, Billoni OV, Tamarit FA, Chialvo DR, Cannas SA (2009) Emergent self-organized complex network topology out of stability constraints. Phys Rev Lett 103:108701PubMedCrossRefGoogle Scholar
  19. 19.
    Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145CrossRefGoogle Scholar
  20. 20.
    Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G et al (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34CrossRefGoogle Scholar
  21. 21.
    van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150CrossRefGoogle Scholar
  22. 22.
    Pascual-Garcia A, Bastolla U (2017) Mutualism supports biodiversity when the direct competition is weak. Nat Commun 8:14326PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    James A, Pitchford JW, Plank MJ (2012) Disentangling nestedness from models of ecological complexity. Nature 487:227–230PubMedCrossRefGoogle Scholar
  24. 24.
    Fassoni AC, Martins ML (2014) Mathematical analysis of a model for plant invasion mediated by allelopathy. Ecol Complex 18:49–58CrossRefGoogle Scholar
  25. 25.
    Strogatz SH (2000) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press, Cambridge, MAGoogle Scholar
  26. 26.
    Britton N (2003) Essential mathematical biology. Springer, LondonCrossRefGoogle Scholar
  27. 27.
    Fox MD, Fox BD (1986) The susceptibility of natural communities to invasion. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions: an Australian perspective. Australian Academy of Science, Canberra, pp 97–105Google Scholar
  28. 28.
    Carvalho SA, Martins ML (2018) Invasion waves in the biochemical warfare between living organisms. Phys Rev E 97:042403PubMedCrossRefGoogle Scholar
  29. 29.
    Gordon DM, O’Brien CL (2006) Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 152:3239–3244PubMedCrossRefGoogle Scholar
  30. 30.
    Melchionda D, Pastacaldi E, Perri C, Banerjee M, Venturino E (2018) Social behavior-induced multistability in minimal competitive ecosystems. J Theor Biol 439:24–38PubMedCrossRefGoogle Scholar
  31. 31.
    May RM (1973) Stability and complexity in model ecosystems. Princeton University Press, PrincetonGoogle Scholar
  32. 32.
    Reichenbach T, Mobilia M, Frey E (2007) Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 448:1046–1049PubMedCrossRefGoogle Scholar
  33. 33.
    Cheng H, Yao N, Huang Z-G, Park J, Do Y, La Y-C (2014) Mesoscopic interactions and species coexistence in evolutionary game dynamics of cyclic competitions. Sci Rep 4:7486PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Szabó P, Czárán T, Szabó G (2007) Competing associations in bacterial warfare with two toxins. J Theor Biol 248:736–744PubMedCrossRefGoogle Scholar
  35. 35.
    Carvalho SA, Martins ML (2018) Community structures in allelopathic interaction networks: an eco-evolutionary approach. Submitted to arXiv 30 Nov 2018
  36. 36.
    Edwards KF et al (2018) Evolutionary stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol Lett. Scholar
  37. 37.
    Barabási A-L (2016) Network science. Cambridge University Press, Cambridge, MAGoogle Scholar
  38. 38.
    May RM (1972) Will a large complex system stable? Nature 238:413PubMedCrossRefGoogle Scholar
  39. 39.
    Inderjit, Wardle DA, Karban R, Callaway R (2011) The ecosystem and evolutionary contexts of allelopathy. Tends Ecol Evol 26:655–662CrossRefGoogle Scholar
  40. 40.
    Glimm J, Sharp DH (1997) Multiscale science. A challenge for the twenty-first century. SIAM News 30(4):17–19Google Scholar
  41. 41.
    Krumhansl JA (2000) Multiscale science: materials in the 21st century. Mater Sci Forum 327:1–8CrossRefGoogle Scholar
  42. 42.
    Martins ML, Ferreira SC Jr, Vilela MJ (2007) Multiscale models for the growth of avascular tumors. Phys Life Rev 4:128–156CrossRefGoogle Scholar
  43. 43.
    Martins ML, Ferreira SC Jr, Vilela MJ (2010) Multiscale models for biological systems. Curr Opin Colloid Interface Sci 15:18–23CrossRefGoogle Scholar
  44. 44.
    Souza DR, Martins ML, Carmo FMS (2007) A multiscale model for plant invasion through allelopathic suppression. Biol Invasions 12:1543–1555CrossRefGoogle Scholar
  45. 45.
    Wolfram S (1986) Theory and application of cellular automata. World Scientific, SingaporeGoogle Scholar
  46. 46.
    Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160(1):97–133PubMedCrossRefGoogle Scholar
  47. 47.
    Cannas SA, Marco DE, Páez SA (2003) Modelling biological invasions: species traits, species interactions, and habitat heterogeneity. Math Biosci 183:93–110PubMedCrossRefGoogle Scholar
  48. 48.
    Cohen JE (2004) Mathematics is biology’s next microscope, only better; biology is mathematics’ next physics, only better. PLoS Biol 2:e439PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de ViçosaViçosaBrazil
  2. 2.National Institute of Science and Technology for Complex, SystemsCentro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil

Personalised recommendations